@@ -285,12 +285,11 @@ theorem insert_apply_right {α} {s : Set.{u} α} [DecidablePred (· ∈ s)] {a :
285285 Equiv.Set.insert H ⟨b, Or.inr b.2 ⟩ = Sum.inl b :=
286286 (Equiv.Set.insert H).apply_eq_iff_eq_symm_apply.2 rfl
287287
288- /-- If `s : Set α` is a set with decidable membership, then `s ⊕ sᶜ` is equivalent to `α`. -/
288+ /-- If `s : Set α` is a set with decidable membership, then `s ⊕ sᶜ` is equivalent to `α`.
289+
290+ See also `Equiv.sumCompl`. -/
289291protected def sumCompl {α} (s : Set α) [DecidablePred (· ∈ s)] : s ⊕ (sᶜ : Set α) ≃ α :=
290- calc
291- s ⊕ (sᶜ : Set α) ≃ ↥(s ∪ sᶜ) := (Equiv.Set.union disjoint_compl_right).symm
292- _ ≃ @univ α := Equiv.setCongr (by simp)
293- _ ≃ α := Equiv.Set.univ _
292+ Equiv.sumCompl (· ∈ s)
294293
295294@[simp]
296295theorem sumCompl_apply_inl {α : Type u} (s : Set α) [DecidablePred (· ∈ s)] (x : s) :
@@ -303,25 +302,25 @@ theorem sumCompl_apply_inr {α : Type u} (s : Set α) [DecidablePred (· ∈ s)]
303302 rfl
304303
305304theorem sumCompl_symm_apply_of_mem {α : Type u} {s : Set α} [DecidablePred (· ∈ s)] {x : α}
306- (hx : x ∈ s) : (Equiv.Set.sumCompl s).symm x = Sum.inl ⟨x, hx⟩ := by
307- simp [Equiv.Set.sumCompl, Equiv.Set.univ, union_apply_left, hx]
305+ (hx : x ∈ s) : (Equiv.Set.sumCompl s).symm x = Sum.inl ⟨x, hx⟩ :=
306+ sumCompl_symm_apply_of_pos hx
308307
309308theorem sumCompl_symm_apply_of_notMem {α : Type u} {s : Set α} [DecidablePred (· ∈ s)] {x : α}
310- (hx : x ∉ s) : (Equiv.Set.sumCompl s).symm x = Sum.inr ⟨x, hx⟩ := by
311- simp [Equiv.Set.sumCompl, Equiv.Set.univ, union_apply_right, hx]
309+ (hx : x ∉ s) : (Equiv.Set.sumCompl s).symm x = Sum.inr ⟨x, hx⟩ :=
310+ sumCompl_symm_apply_of_neg hx
312311
313312@[deprecated (since := "2025-05-23")]
314313alias sumCompl_symm_apply_of_not_mem := sumCompl_symm_apply_of_notMem
315314
316315@[simp]
317- theorem sumCompl_symm_apply {α : Type *} {s : Set α} [DecidablePred (· ∈ s)] { x : s} :
316+ theorem sumCompl_symm_apply {α : Type *} {s : Set α} [DecidablePred (· ∈ s)] ( x : s) :
318317 (Equiv.Set.sumCompl s).symm x = Sum.inl x :=
319- Set.sumCompl_symm_apply_of_mem x. 2
318+ sumCompl_symm_apply_pos x
320319
321320@[simp]
322321theorem sumCompl_symm_apply_compl {α : Type *} {s : Set α} [DecidablePred (· ∈ s)]
323- { x : (sᶜ : Set α)} : (Equiv.Set.sumCompl s).symm x = Sum.inr x :=
324- Set.sumCompl_symm_apply_of_notMem x. 2
322+ ( x : (sᶜ : Set α)) : (Equiv.Set.sumCompl s).symm x = Sum.inr x :=
323+ sumCompl_symm_apply_neg x
325324
326325/-- `sumDiffSubset s t` is the natural equivalence between
327326`s ⊕ (t \ s)` and `t`, where `s` and `t` are two sets. -/
0 commit comments