Skip to content

Commit 88367e0

Browse files
committed
chore(CategoryTheory): namespace Mon, Grp, etc... (#30786)
After this is done, we can finally rename `Mod_` to `Mod`.
1 parent 3dc2bc1 commit 88367e0

File tree

15 files changed

+63
-43
lines changed

15 files changed

+63
-43
lines changed

Mathlib/CategoryTheory/Monoidal/Bimon_.lean

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -29,6 +29,7 @@ universe v₁ v₂ u₁ u₂ u
2929

3030
open CategoryTheory MonoidalCategory
3131

32+
namespace CategoryTheory
3233
variable {C : Type u₁} [Category.{v₁} C] [MonoidalCategory.{v₁} C] [BraidedCategory C]
3334

3435
open scoped MonObj ComonObj
@@ -339,3 +340,4 @@ def mk' (X : C) [BimonObj X] : Bimon C where
339340
comul := .mk' (Δ : X ⟶ X ⊗ X) }
340341

341342
end Bimon
343+
end CategoryTheory

Mathlib/CategoryTheory/Monoidal/Cartesian/CommGrp_.lean

Lines changed: 2 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -14,6 +14,7 @@ assert_not_exists Field
1414

1515
open CategoryTheory MonoidalCategory Limits Opposite CartesianMonoidalCategory MonObj
1616

17+
namespace CategoryTheory
1718
universe w v u
1819
variable {C : Type u} [Category.{v} C] [CartesianMonoidalCategory C] [BraidedCategory C] {X : C}
1920

@@ -37,3 +38,4 @@ def CommGrpObj.ofRepresentableBy (F : Cᵒᵖ ⥤ CommGrpCat.{w})
3738
alias CommGrp_Class.ofRepresentableBy := CommGrpObj.ofRepresentableBy
3839

3940
end CommGrp
41+
end CategoryTheory

Mathlib/CategoryTheory/Monoidal/Cartesian/CommMon_.lean

Lines changed: 3 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -13,6 +13,7 @@ assert_not_exists MonoidWithZero
1313

1414
open CategoryTheory MonoidalCategory Limits Opposite CartesianMonoidalCategory MonObj
1515

16+
namespace CategoryTheory
1617
universe w v u
1718
variable {C : Type u} [Category.{v} C] [CartesianMonoidalCategory C] [BraidedCategory C] {X : C}
1819

@@ -31,3 +32,5 @@ lemma IsCommMonObj.ofRepresentableBy (F : Cᵒᵖ ⥤ CommMonCat) (α : (F ⋙ f
3132

3233
@[deprecated (since := "2025-09-14")]
3334
alias IsCommMon.ofRepresentableBy := IsCommMonObj.ofRepresentableBy
35+
36+
end CategoryTheory

Mathlib/CategoryTheory/Monoidal/Cartesian/Comon_.lean

Lines changed: 3 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -19,6 +19,7 @@ universe v u
1919

2020
noncomputable section
2121

22+
namespace CategoryTheory
2223
variable (C : Type u) [Category.{v} C] [CartesianMonoidalCategory C]
2324

2425
attribute [local simp] leftUnitor_hom rightUnitor_hom
@@ -71,3 +72,5 @@ to the category itself, via the forgetful functor.
7172
inverse := cartesianComon C
7273
unitIso := NatIso.ofComponents isoCartesianComon
7374
counitIso := NatIso.ofComponents (fun _ => .refl _)
75+
76+
end CategoryTheory

Mathlib/CategoryTheory/Monoidal/Cartesian/Grp_.lean

Lines changed: 5 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -18,6 +18,7 @@ assert_not_exists Field
1818

1919
open CategoryTheory MonoidalCategory Limits Opposite CartesianMonoidalCategory MonObj
2020

21+
namespace CategoryTheory
2122
universe w v u
2223
variable {C : Type u} [Category.{v} C] [CartesianMonoidalCategory C]
2324
{M G H X Y : C} [MonObj M] [GrpObj G] [GrpObj H]
@@ -69,7 +70,7 @@ abbrev Hom.group : Group (X ⟶ G) where
6970
_ = (f ≫ lift ι (𝟙 G)) ≫ μ := by simp
7071
_ = toUnit X ≫ η := by rw [Category.assoc]; simp
7172

72-
scoped[MonObj] attribute [instance] Hom.group
73+
scoped[CategoryTheory.MonObj] attribute [instance] Hom.group
7374

7475
lemma Hom.inv_def (f : X ⟶ G) : f⁻¹ = f ≫ ι := rfl
7576

@@ -197,4 +198,6 @@ instance [BraidedCategory C] [IsCommMonObj G] {f : M ⟶ G} [IsMonHom f] : IsMon
197198
/-- If `G` is a commutative group object, then `Hom(X, G)` has a commutative group structure. -/
198199
abbrev Hom.commGroup [BraidedCategory C] [IsCommMonObj G] : CommGroup (X ⟶ G) where
199200

200-
scoped[MonObj] attribute [instance] Hom.commGroup
201+
scoped[CategoryTheory.MonObj] attribute [instance] Hom.commGroup
202+
203+
end CategoryTheory

Mathlib/CategoryTheory/Monoidal/Cartesian/Mod_.lean

Lines changed: 3 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -12,6 +12,7 @@ import Mathlib.CategoryTheory.Monoidal.Mod_
1212

1313
open CategoryTheory MonoidalCategory CartesianMonoidalCategory
1414

15+
namespace CategoryTheory
1516
universe v u
1617
variable {C : Type u} [Category.{v} C] [CartesianMonoidalCategory C]
1718

@@ -29,3 +30,5 @@ attribute [local instance] ModObj.trivialAction in
2930
@[simps]
3031
def Mod_.trivialAction (M : Mon C) (X : C) : Mod_ C M.X where
3132
X := X
33+
34+
end CategoryTheory

Mathlib/CategoryTheory/Monoidal/Cartesian/Mon_.lean

Lines changed: 6 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -17,6 +17,7 @@ showing that it is fully faithful and its (essential) image is the representable
1717

1818
open CategoryTheory MonoidalCategory Limits Opposite CartesianMonoidalCategory MonObj
1919

20+
namespace CategoryTheory
2021
universe w v u
2122
variable {C D : Type*} [Category.{v} C] [CartesianMonoidalCategory C]
2223
[Category.{w} D] [CartesianMonoidalCategory D]
@@ -150,12 +151,12 @@ abbrev Hom.monoid : Monoid (X ⟶ M) where
150151
Category.comp_id, rightUnitor_hom]
151152
exact lift_fst _ _
152153

153-
scoped[MonObj] attribute [instance] Hom.monoid
154+
scoped[CategoryTheory.MonObj] attribute [instance] Hom.monoid
154155

155156
lemma Hom.one_def : (1 : X ⟶ M) = toUnit X ≫ η := rfl
156157
lemma Hom.mul_def (f₁ f₂ : X ⟶ M) : f₁ * f₂ = lift f₁ f₂ ≫ μ := rfl
157158

158-
namespace CategoryTheory.Functor
159+
namespace Functor
159160
variable (F : C ⥤ D) [F.Monoidal]
160161

161162
open scoped Obj
@@ -181,7 +182,7 @@ def FullyFaithful.homMulEquiv (hF : F.FullyFaithful) : (X ⟶ M) ≃* (F.obj X
181182
__ := hF.homEquiv
182183
__ := F.homMonoidHom
183184

184-
end CategoryTheory.Functor
185+
end Functor
185186

186187
section BraidedCategory
187188
variable [BraidedCategory C]
@@ -190,7 +191,7 @@ variable [BraidedCategory C]
190191
abbrev Hom.commMonoid [IsCommMonObj M] : CommMonoid (X ⟶ M) where
191192
mul_comm f g := by simpa [-IsCommMonObj.mul_comm] using lift g f ≫= IsCommMonObj.mul_comm M
192193

193-
scoped[MonObj] attribute [instance] Hom.commMonoid
194+
scoped[CategoryTheory.MonObj] attribute [instance] Hom.commMonoid
194195

195196
end BraidedCategory
196197

@@ -365,3 +366,4 @@ def mulEquivCongrRight (e : M ≅ N) [IsMonHom e.hom] (X : C) : (X ⟶ M) ≃* (
365366
((yonedaMon.mapIso <| Mon.mkIso' e).app <| .op X).monCatIsoToMulEquiv
366367

367368
end Hom
369+
end CategoryTheory

Mathlib/CategoryTheory/Monoidal/CommGrp_.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -15,6 +15,7 @@ universe v₁ v₂ v₃ u₁ u₂ u₃
1515
open CategoryTheory Category Limits MonoidalCategory CartesianMonoidalCategory Mon Grp CommMon
1616
open MonObj
1717

18+
namespace CategoryTheory
1819
variable (C : Type u₁) [Category.{v₁} C] [CartesianMonoidalCategory.{v₁} C] [BraidedCategory C]
1920

2021
/-- A commutative group object internal to a Cartesian monoidal category. -/
@@ -184,7 +185,6 @@ instance : HasInitial (CommGrp C) :=
184185

185186
end CommGrp
186187

187-
namespace CategoryTheory
188188
variable {C}
189189
{D : Type u₂} [Category.{v₂} D] [CartesianMonoidalCategory D] [BraidedCategory D]
190190
{E : Type u₃} [Category.{v₃} E] [CartesianMonoidalCategory E] [BraidedCategory E]

Mathlib/CategoryTheory/Monoidal/CommMon_.lean

Lines changed: 4 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -14,6 +14,7 @@ universe v₁ v₂ v₃ u₁ u₂ u₃ u
1414

1515
open CategoryTheory MonoidalCategory MonObj
1616

17+
namespace CategoryTheory
1718
variable {C : Type u₁} [Category.{v₁} C] [MonoidalCategory.{v₁} C] [BraidedCategory.{v₁} C]
1819

1920
variable (C) in
@@ -147,7 +148,6 @@ instance : HasInitial (CommMon C) :=
147148

148149
end CommMon
149150

150-
namespace CategoryTheory
151151
variable
152152
{D : Type u₂} [Category.{v₂} D] [MonoidalCategory D] [BraidedCategory D]
153153
{E : Type u₃} [Category.{v₃} E] [MonoidalCategory E] [BraidedCategory E]
@@ -271,11 +271,11 @@ def mapCommMon (e : C ≌ D) [e.functor.Braided] [e.inverse.Braided] [e.IsMonoid
271271
unitIso := mapCommMonIdIso.symm ≪≫ mapCommMonNatIso e.unitIso ≪≫ mapCommMonCompIso
272272
counitIso := mapCommMonCompIso.symm ≪≫ mapCommMonNatIso e.counitIso ≪≫ mapCommMonIdIso
273273

274-
end CategoryTheory.Equivalence
274+
end Equivalence
275275

276276
namespace CommMon
277277

278-
open CategoryTheory.LaxBraidedFunctor
278+
open LaxBraidedFunctor
279279

280280
namespace EquivLaxBraidedFunctorPUnit
281281

@@ -355,3 +355,4 @@ def equivLaxBraidedFunctorPUnit : LaxBraidedFunctor (Discrete PUnit.{u + 1}) C
355355
counitIso := counitIso C
356356

357357
end CommMon
358+
end CategoryTheory

Mathlib/CategoryTheory/Monoidal/Comon_.lean

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -29,6 +29,7 @@ universe v₁ v₂ u₁ u₂ u
2929

3030
open CategoryTheory MonoidalCategory
3131

32+
namespace CategoryTheory
3233
variable {C : Type u₁} [Category.{v₁} C] [MonoidalCategory.{v₁} C]
3334

3435
/-- A comonoid object internal to a monoidal category.
@@ -387,7 +388,7 @@ open Functor.LaxMonoidal Functor.OplaxMonoidal
387388

388389
end Comon
389390

390-
namespace CategoryTheory.Functor
391+
namespace Functor
391392

392393
variable {D : Type u₂} [Category.{v₂} D] [MonoidalCategory.{v₂} D]
393394

@@ -444,9 +445,8 @@ def mapComon (F : C ⥤ D) [F.OplaxMonoidal] : Comon C ⥤ Comon D where
444445
-- TODO We haven't yet set up the category structure on `OplaxMonoidalFunctor C D`
445446
-- and so can't state `mapComonFunctor : OplaxMonoidalFunctor C D ⥤ Comon C ⥤ Comon D`.
446447

447-
end CategoryTheory.Functor
448+
end Functor
448449

449-
section
450450
variable [BraidedCategory.{v₁} C]
451451

452452
/-- Predicate for a comonoid object to be commutative. -/
@@ -457,4 +457,4 @@ open scoped ComonObj
457457

458458
attribute [reassoc (attr := simp)] IsCommComonObj.comul_comm
459459

460-
end
460+
end CategoryTheory

0 commit comments

Comments
 (0)