@@ -17,6 +17,7 @@ showing that it is fully faithful and its (essential) image is the representable
1717
1818open CategoryTheory MonoidalCategory Limits Opposite CartesianMonoidalCategory MonObj
1919
20+ namespace CategoryTheory
2021universe w v u
2122variable {C D : Type *} [Category.{v} C] [CartesianMonoidalCategory C]
2223 [Category.{w} D] [CartesianMonoidalCategory D]
@@ -150,12 +151,12 @@ abbrev Hom.monoid : Monoid (X ⟶ M) where
150151 Category.comp_id, rightUnitor_hom]
151152 exact lift_fst _ _
152153
153- scoped [MonObj] attribute [instance] Hom.monoid
154+ scoped [CategoryTheory. MonObj] attribute [instance] Hom.monoid
154155
155156lemma Hom.one_def : (1 : X ⟶ M) = toUnit X ≫ η := rfl
156157lemma Hom.mul_def (f₁ f₂ : X ⟶ M) : f₁ * f₂ = lift f₁ f₂ ≫ μ := rfl
157158
158- namespace CategoryTheory. Functor
159+ namespace Functor
159160variable (F : C ⥤ D) [F.Monoidal]
160161
161162open scoped Obj
@@ -181,7 +182,7 @@ def FullyFaithful.homMulEquiv (hF : F.FullyFaithful) : (X ⟶ M) ≃* (F.obj X
181182 __ := hF.homEquiv
182183 __ := F.homMonoidHom
183184
184- end CategoryTheory. Functor
185+ end Functor
185186
186187section BraidedCategory
187188variable [BraidedCategory C]
@@ -190,7 +191,7 @@ variable [BraidedCategory C]
190191abbrev Hom.commMonoid [IsCommMonObj M] : CommMonoid (X ⟶ M) where
191192 mul_comm f g := by simpa [-IsCommMonObj.mul_comm] using lift g f ≫= IsCommMonObj.mul_comm M
192193
193- scoped [MonObj] attribute [instance] Hom.commMonoid
194+ scoped [CategoryTheory. MonObj] attribute [instance] Hom.commMonoid
194195
195196end BraidedCategory
196197
@@ -365,3 +366,4 @@ def mulEquivCongrRight (e : M ≅ N) [IsMonHom e.hom] (X : C) : (X ⟶ M) ≃* (
365366 ((yonedaMon.mapIso <| Mon.mkIso' e).app <| .op X).monCatIsoToMulEquiv
366367
367368end Hom
369+ end CategoryTheory
0 commit comments