Skip to content

Commit 8fe433b

Browse files
committed
chore(RingTheory/Ideal): deprecate exists_ideal_liesOver_maximal_of_isIntegral (#31333)
1 parent e189966 commit 8fe433b

File tree

3 files changed

+4
-7
lines changed

3 files changed

+4
-7
lines changed

Mathlib/RingTheory/DedekindDomain/Basic.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -160,6 +160,6 @@ theorem IsLocalRing.primesOver_eq [IsLocalRing A] [IsDedekindDomain A] [Algebra
160160
[FaithfulSMul R A] [Module.Finite R A] {p : Ideal R} [p.IsMaximal] (hp0 : p ≠ ⊥) :
161161
Ideal.primesOver p A = {IsLocalRing.maximalIdeal A} := by
162162
refine Set.eq_singleton_iff_nonempty_unique_mem.mpr ⟨?_, fun P hP ↦ ?_⟩
163-
· obtain ⟨w', hmax, hover⟩ := Ideal.exists_ideal_liesOver_maximal_of_isIntegral p A
163+
· obtain ⟨w', hmax, hover⟩ := exists_maximal_ideal_liesOver_of_isIntegral (S := A) p
164164
exact ⟨w', hmax.isPrime, hover⟩
165165
· exact IsLocalRing.eq_maximalIdeal <| hP.1.isMaximal (Ideal.ne_bot_of_mem_primesOver hp0 hP)

Mathlib/RingTheory/DedekindDomain/Ideal/Lemmas.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -1049,7 +1049,7 @@ theorem primesOver_finite : (primesOver p B).Finite := by
10491049
noncomputable instance : Fintype (p.primesOver B) := Set.Finite.fintype (primesOver_finite p B)
10501050

10511051
theorem primesOver_ncard_ne_zero : (primesOver p B).ncard ≠ 0 := by
1052-
rcases exists_ideal_liesOver_maximal_of_isIntegral p B with ⟨P, hPm, hp⟩
1052+
rcases exists_maximal_ideal_liesOver_of_isIntegral (S := B) p with ⟨P, hPm, hp⟩
10531053
exact Set.ncard_ne_zero_of_mem ⟨hPm.isPrime, hp⟩ (primesOver_finite p B)
10541054

10551055
theorem one_le_primesOver_ncard : 1 ≤ (primesOver p B).ncard :=

Mathlib/RingTheory/Ideal/GoingUp.lean

Lines changed: 2 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -393,11 +393,8 @@ theorem under_ne_bot [Nontrivial A] [IsDomain B] (hP : P ≠ ⊥) : under A P
393393
instance Quotient.algebra_isIntegral_of_liesOver : Algebra.IsIntegral (A ⧸ p) (B ⧸ P) :=
394394
Algebra.IsIntegral.tower_top A
395395

396-
theorem exists_ideal_liesOver_maximal_of_isIntegral [p.IsMaximal] (B : Type*) [CommRing B]
397-
[Nontrivial B] [Algebra A B] [NoZeroSMulDivisors A B] [Algebra.IsIntegral A B] :
398-
∃ P : Ideal B, P.IsMaximal ∧ P.LiesOver p := by
399-
obtain ⟨P, hm, hP⟩ := exists_ideal_over_maximal_of_isIntegral (S := B) p <| by simp
400-
exact ⟨P, hm, ⟨hP.symm⟩⟩
396+
@[deprecated (since := "2025-11-06")] alias exists_ideal_liesOver_maximal_of_isIntegral :=
397+
exists_maximal_ideal_liesOver_of_isIntegral
401398

402399
end IsIntegral
403400

0 commit comments

Comments
 (0)