File tree Expand file tree Collapse file tree 1 file changed +17
-4
lines changed Expand file tree Collapse file tree 1 file changed +17
-4
lines changed Original file line number Diff line number Diff line change @@ -234,11 +234,24 @@ lemma IsSelfAdjoint.mono {x y : R} (h : x ≤ y) (hx : IsSelfAdjoint x) : IsSelf
234234lemma IsSelfAdjoint.of_nonneg {x : R} (hx : 0 ≤ x) : IsSelfAdjoint x :=
235235 (isSelfAdjoint_zero R).mono hx
236236
237+ theorem conjugate_lt_conjugate {a b : R} (hab : a < b) {c : R} (hc : IsRegular c) :
238+ star c * a * c < star c * b * c := by
239+ rw [(conjugate_le_conjugate hab.le _).lt_iff_ne, hc.right.ne_iff, hc.star.left.ne_iff]
240+ exact hab.ne
241+
242+ theorem conjugate_lt_conjugate' {a b : R} (hab : a < b) {c : R} (hc : IsRegular c) :
243+ c * a * star c < c * b * star c := by
244+ simpa only [star_star] using conjugate_lt_conjugate hab hc.star
245+
246+ theorem conjugate_pos {a : R} (ha : 0 < a) {c : R} (hc : IsRegular c) : 0 < star c * a * c := by
247+ simpa only [mul_zero, zero_mul] using conjugate_lt_conjugate ha hc
248+
249+ theorem conjugate_pos' {a : R} (ha : 0 < a) {c : R} (hc : IsRegular c) : 0 < c * a * star c := by
250+ simpa only [star_star] using conjugate_pos ha hc.star
251+
237252theorem star_mul_self_pos [Nontrivial R] {x : R} (hx : IsRegular x) : 0 < star x * x := by
238- rw [(star_mul_self_nonneg _).lt_iff_ne]
239- intro h
240- rw [← mul_zero (star x), hx.star.left.eq_iff] at h
241- exact hx.ne_zero h.symm
253+ rw [(star_mul_self_nonneg _).lt_iff_ne, ← mul_zero (star x), hx.star.left.ne_iff]
254+ exact hx.ne_zero.symm
242255
243256theorem mul_star_self_pos [Nontrivial R] {x : R} (hx : IsRegular x) : 0 < x * star x := by
244257 simpa using star_mul_self_pos hx.star
You can’t perform that action at this time.
0 commit comments