Skip to content

Commit 9ab8535

Browse files
committed
feat(Algebra/Star/SelfAdjoint): unit * a * star unit is self-adjoint iff a is (#28544)
1 parent 853f249 commit 9ab8535

File tree

1 file changed

+10
-0
lines changed

1 file changed

+10
-0
lines changed

Mathlib/Algebra/Star/SelfAdjoint.lean

Lines changed: 10 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -182,6 +182,16 @@ variable [Monoid R] [StarMul R]
182182
theorem pow {x : R} (hx : IsSelfAdjoint x) (n : ℕ) : IsSelfAdjoint (x ^ n) := by
183183
simp only [isSelfAdjoint_iff, star_pow, hx.star_eq]
184184

185+
@[grind =]
186+
lemma _root_.isSelfAdjoint_conjugate_iff_of_isUnit {a u : R} (hu : IsUnit u) :
187+
IsSelfAdjoint (u * a * star u) ↔ IsSelfAdjoint a := by
188+
simp [IsSelfAdjoint, mul_assoc, hu.mul_right_inj, hu.star.mul_left_inj]
189+
190+
@[grind =]
191+
lemma _root_.isSelfAdjoint_conjugate_iff_of_isUnit' {a u : R} (hu : IsUnit u) :
192+
IsSelfAdjoint (star u * a * u) ↔ IsSelfAdjoint a := by
193+
simpa using isSelfAdjoint_conjugate_iff_of_isUnit hu.star
194+
185195
end Monoid
186196

187197
section Semiring

0 commit comments

Comments
 (0)