|
| 1 | +/- |
| 2 | +Copyright (c) 2024 Scott Carnahan. All rights reserved. |
| 3 | +Released under Apache 2.0 license as described in the file LICENSE. |
| 4 | +Authors: Scott Carnahan |
| 5 | +-/ |
| 6 | +import Mathlib.Algebra.Lie.Submodule |
| 7 | + |
| 8 | +/-! |
| 9 | +# Extensions of Lie algebras |
| 10 | +This file defines extensions of Lie algebras, given by short exact sequences of Lie algebra |
| 11 | +homomorphisms. They are implemented in two ways: `IsExtension` is a `Prop`-valued class taking two |
| 12 | +homomorphisms as parameters, and `Extension` is a structure that includes the middle Lie algebra. |
| 13 | +
|
| 14 | +## Main definitions |
| 15 | + * `LieAlgebra.IsExtension`: A `Prop`-valued class characterizing an extension of Lie algebras. |
| 16 | + * `LieAlgebra.Extension`: A bundled structure giving an extension of Lie algebras. |
| 17 | + * `LieAlgebra.IsExtension.extension`: A function that builds the bundled structure from the class. |
| 18 | +
|
| 19 | +## TODO |
| 20 | + * `IsCentral` - central extensions |
| 21 | + * `Equiv` - equivalence of extensions |
| 22 | + * `ofTwoCocycle` - construction of extensions from 2-cocycles |
| 23 | +
|
| 24 | +## References |
| 25 | +* [N. Bourbaki, *Lie Groups and Lie Algebras, Chapters 1--3*](bourbaki1975) |
| 26 | +
|
| 27 | +-/ |
| 28 | + |
| 29 | +namespace LieAlgebra |
| 30 | + |
| 31 | +variable {R N L M : Type*} |
| 32 | + |
| 33 | +variable [CommRing R] [LieRing L] [LieAlgebra R L] [LieRing N] [LieAlgebra R N] [LieRing M] |
| 34 | + [LieAlgebra R M] |
| 35 | + |
| 36 | +/-- A sequence of two Lie algebra homomorphisms is an extension if it is short exact. -/ |
| 37 | +class IsExtension (i : N →ₗ⁅R⁆ L) (p : L →ₗ⁅R⁆ M) : Prop where |
| 38 | + ker_eq_bot : i.ker = ⊥ |
| 39 | + range_eq_top : p.range = ⊤ |
| 40 | + exact : i.range = p.ker |
| 41 | + |
| 42 | +variable (R N M) in |
| 43 | +/-- The type of all Lie extensions of `M` by `N`. That is, short exact sequences of `R`-Lie algebra |
| 44 | +homomorphisms `0 → N → L → M → 0` where `R`, `M`, and `N` are fixed. -/ |
| 45 | +structure Extension where |
| 46 | + /-- The middle object in the sequence. -/ |
| 47 | + L : Type* |
| 48 | + /-- `L` is a Lie ring. -/ |
| 49 | + instLieRing : LieRing L |
| 50 | + /-- `L` is a Lie algebra over `R`. -/ |
| 51 | + instLieAlgebra : LieAlgebra R L |
| 52 | + /-- The inclusion homomorphism `N →ₗ⁅R⁆ L` -/ |
| 53 | + incl : N →ₗ⁅R⁆ L |
| 54 | + /-- The projection homomorphism `L →ₗ⁅R⁆ M` -/ |
| 55 | + proj : L →ₗ⁅R⁆ M |
| 56 | + IsExtension : IsExtension incl proj |
| 57 | + |
| 58 | +/-- The bundled `LieAlgebra.Extension` corresponding to `LieAlgebra.IsExtension` -/ |
| 59 | +@[simps] def IsExtension.extension {i : N →ₗ⁅R⁆ L} {p : L →ₗ⁅R⁆ M} (h : IsExtension i p) : |
| 60 | + Extension R N M := |
| 61 | + ⟨L, _, _, i, p, h⟩ |
| 62 | + |
| 63 | +/-- A surjective Lie algebra homomorphism yields an extension. -/ |
| 64 | +theorem isExtension_of_surjective (f : L →ₗ⁅R⁆ M) (hf : Function.Surjective f) : |
| 65 | + IsExtension f.ker.incl f where |
| 66 | + ker_eq_bot := LieIdeal.ker_incl f.ker |
| 67 | + range_eq_top := (LieHom.range_eq_top f).mpr hf |
| 68 | + exact := LieIdeal.incl_range f.ker |
| 69 | + |
| 70 | +end LieAlgebra |
0 commit comments