File tree Expand file tree Collapse file tree 2 files changed +18
-10
lines changed
MeasureTheory/Measure/Typeclasses Expand file tree Collapse file tree 2 files changed +18
-10
lines changed Original file line number Diff line number Diff line change @@ -4,6 +4,7 @@ Released under Apache 2.0 license as described in the file LICENSE.
44Authors: Johannes Hölzl, Mario Carneiro
55-/
66import Mathlib.MeasureTheory.Measure.Typeclasses.Finite
7+ import Mathlib.Topology.UnitInterval
78
89/-!
910# Classes for probability measures
@@ -92,6 +93,11 @@ instance isProbabilityMeasure_ite {p : Prop} [Decidable p] {μ ν : Measure α}
9293 [IsProbabilityMeasure μ] [IsProbabilityMeasure ν] :
9394 IsProbabilityMeasure (ite p μ ν) := by split <;> infer_instance
9495
96+ open unitInterval in
97+ instance {μ ν : Measure α} [IsProbabilityMeasure μ] [IsProbabilityMeasure ν] {p : I} :
98+ IsProbabilityMeasure (toNNReal p • μ + toNNReal (σ p) • ν) where
99+ measure_univ := by simp [← add_smul]
100+
95101variable [IsProbabilityMeasure μ] {p : α → Prop } {f : β → α}
96102
97103theorem Measure.isProbabilityMeasure_map {f : α → β} (hf : AEMeasurable f μ) :
Original file line number Diff line number Diff line change @@ -385,19 +385,21 @@ theorem iccHomeoI_symm_apply_coe (a b : 𝕜) (h : a < b) (x : Set.Icc (0 : 𝕜
385385
386386end
387387
388- section NNReal
388+ namespace unitInterval
389389
390- open unitInterval NNReal
390+ open NNReal
391391
392392/-- The coercion from `I` to `ℝ≥0`. -/
393- def unitInterval. toNNReal : I → ℝ≥0 := fun i ↦ ⟨i.1 , i.2 .1 ⟩
393+ def toNNReal : I → ℝ≥0 := fun i ↦ ⟨i.1 , i.2 .1 ⟩
394394
395- @[fun_prop]
396- lemma unitInterval.toNNReal_continuous : Continuous toNNReal := by
397- delta toNNReal
398- fun_prop
395+ @[simp] lemma toNNReal_zero : toNNReal 0 = 0 := rfl
396+ @[simp] lemma toNNReal_one : toNNReal 1 = 1 := rfl
399397
400- @[simp]
401- lemma unitInterval.coe_toNNReal (x : I) : ((toNNReal x) : ℝ) = x := rfl
398+ @[fun_prop] lemma toNNReal_continuous : Continuous toNNReal := by delta toNNReal; fun_prop
399+
400+ @[simp] lemma coe_toNNReal (x : I) : ((toNNReal x) : ℝ) = x := rfl
402401
403- end NNReal
402+ @[simp] lemma toNNReal_add_toNNReal_symm (x : I) : toNNReal x + toNNReal (σ x) = 1 := by ext; simp
403+ @[simp] lemma toNNReal_symm_add_toNNReal (x : I) : toNNReal (σ x) + toNNReal x = 1 := by ext; simp
404+
405+ end unitInterval
You can’t perform that action at this time.
0 commit comments