Skip to content

Commit a79df06

Browse files
chore: tidy various files (#31207)
1 parent 5dfc72f commit a79df06

File tree

27 files changed

+92
-110
lines changed

27 files changed

+92
-110
lines changed

Mathlib/Algebra/Homology/DerivedCategory/Ext/Linear.lean

Lines changed: 4 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -38,7 +38,7 @@ noncomputable instance : Module R (Ext X Y n) :=
3838

3939
lemma smul_eq_comp_mk₀ (x : Ext X Y n) (r : R) :
4040
r • x = x.comp (mk₀ (r • 𝟙 Y)) (add_zero _) := by
41-
letI := HasDerivedCategory.standard C
41+
let := HasDerivedCategory.standard C
4242
ext
4343
apply ((Equiv.linearEquiv R homEquiv).map_smul r x).trans
4444
change r • homEquiv x = (x.comp (mk₀ (r • 𝟙 Y)) (add_zero _)).hom
@@ -54,14 +54,14 @@ lemma smul_hom (x : Ext X Y n) (r : R) [HasDerivedCategory C] :
5454
lemma comp_smul {X Y Z : C} {a b : ℕ} (α : Ext X Y a) (β : Ext Y Z b)
5555
{c : ℕ} (h : a + b = c) (r : R) :
5656
α.comp (r • β) h = r • α.comp β h := by
57-
letI := HasDerivedCategory.standard C
57+
let := HasDerivedCategory.standard C
5858
aesop
5959

6060
@[simp]
6161
lemma smul_comp {X Y Z : C} {a b : ℕ} (α : Ext X Y a) (β : Ext Y Z b)
6262
{c : ℕ} (h : a + b = c) (r : R) :
6363
(r • α).comp β h = r • α.comp β h := by
64-
letI := HasDerivedCategory.standard C
64+
let := HasDerivedCategory.standard C
6565
aesop
6666

6767
open DerivedCategory in
@@ -76,7 +76,7 @@ noncomputable def homLinearEquiv [HasDerivedCategory.{w'} C] :
7676
map_smul' := by simp
7777

7878
lemma mk₀_smul (r : R) (f : X ⟶ Y) : mk₀ (r • f) = r • mk₀ f := by
79-
letI := HasDerivedCategory.standard C
79+
let := HasDerivedCategory.standard C
8080
aesop
8181

8282
/-- The linear equivalence `Ext X Y 0 ≃ₜ[R] (X ⟶ Y)`. -/

Mathlib/Algebra/Order/Star/Basic.lean

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -340,8 +340,8 @@ lemma IsUnit.conjugate_nonneg_iff {u x : R} (hu : IsUnit u) :
340340
0 ≤ u * x * star u ↔ 0 ≤ x := by
341341
refine ⟨fun h ↦ ?_, fun h ↦ conjugate_nonneg' h _⟩
342342
obtain ⟨v, hv⟩ := hu.exists_left_inv
343-
have := by simpa [mul_assoc] using conjugate_nonneg' h v
344-
rwa [hv, one_mul, mul_assoc, ← star_mul, hv, star_one, mul_one] at this
343+
have : 0 ≤ (v * u) * x * star (v * u) := by simpa [mul_assoc] using conjugate_nonneg' h v
344+
simpa [hv]
345345

346346
lemma IsUnit.conjugate_nonneg_iff' {u x : R} (hu : IsUnit u) :
347347
0 ≤ star u * x * u ↔ 0 ≤ x := by

Mathlib/Algebra/SkewMonoidAlgebra/Lift.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -23,7 +23,7 @@ variable {A B : Type*} [Semiring A] [Algebra k A] [Semiring B] [Algebra k B]
2323

2424
/-- `liftNCRingHom` as an `AlgHom`, for when `f` is an `AlgHom` -/
2525
def liftNCAlgHom [MulSemiringAction G A] [SMulCommClass G k A] (f : A →ₐ[k] B)
26-
(g : G →* B) (h_comm : ∀ {x y}, (f (y • x)) * g y = (g y) * (f x)) :
26+
(g : G →* B) (h_comm : ∀ {x y}, (f (y • x)) * g y = (g y) * (f x)) :
2727
SkewMonoidAlgebra A G →ₐ[k] B where
2828
__ := liftNCRingHom (f : A →+* B) g h_comm
2929
commutes' := by simp [liftNCRingHom]

Mathlib/Algebra/SkewPolynomial/Basic.lean

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -135,7 +135,7 @@ lemma φ_iterate_apply (n : ℕ) (a : R) : (φ^[n] a) = ((ofAdd n) • a) := by
135135
induction n with
136136
| zero => simp
137137
| succ n hn =>
138-
simp_all [MulSemiringAction.toRingHom_apply, Function.iterate_succ', -Function.iterate_succ,
138+
simp_all [MulSemiringAction.toRingHom_apply, Function.iterate_succ', -Function.iterate_succ,
139139
← mul_smul, mul_comm]
140140

141141
end phi
@@ -145,8 +145,8 @@ def monomial (n : ℕ) : R →ₗ[R] SkewPolynomial R := lsingle (ofAdd n)
145145

146146
lemma monomial_zero_right (n : ℕ) : monomial n (0 : R) = 0 := single_zero _
147147

148-
lemma monomial_zero_one [MulSemiringAction (Multiplicative ℕ) R] :
149-
monomial (0 : ℕ) (1 : R) = 1 := by rfl
148+
lemma monomial_zero_one [MulSemiringAction (Multiplicative ℕ) R] : monomial (0 : ℕ) (1 : R) = 1 :=
149+
rfl
150150

151151
lemma monomial_def (n : ℕ) (a : R) : monomial n a = single (ofAdd n) a := rfl
152152

Mathlib/AlgebraicTopology/SimplicialSet/AnodyneExtensions/IsUniquelyCodimOneFace.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -13,7 +13,7 @@ we say that `x` is uniquely a `1`-codimensional face of `y` if there
1313
exists a unique `i : Fin (d + 2)` such that `X.δ i y = x`. In this file,
1414
we extend this to a predicate `IsUniquelyCodimOneFace` involving two terms
1515
in the type `X.S` of simplices of `X`. This is used in the
16-
file `AlgebraicTopology.SimplicialSet.AnodyneExtensions.Pairing` for the
16+
file `Mathlib/AlgebraicTopology/SimplicialSet/AnodyneExtensions/Pairing.lean` for the
1717
study of strong (inner) anodyne extensions.
1818
1919
## References

Mathlib/AlgebraicTopology/SimplicialSet/AnodyneExtensions/Pairing.lean

Lines changed: 2 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -47,7 +47,8 @@ variable {X : SSet.{u}} (A : X.Subcomplex)
4747
/-- A pairing for a subcomplex `A` of a simplicial set `X` consists of a partition
4848
of the nondegenerate simplices of `X` not in `A` in two types (I) and (II) of simplices,
4949
and a bijection between the type (II) simplices and the type (I) simplices.
50-
See the introduction of the file `AlgebraicTopology.SimplicialSet.AnodyneExtensions.Pairing`. -/
50+
See the introduction of the file
51+
`Mathlib/AlgebraicTopology/SimplicialSet/AnodyneExtensions/Pairing.lean`. -/
5152
structure Pairing where
5253
/-- the set of type (I) simplices -/
5354
I : Set A.N

Mathlib/AlgebraicTopology/SimplicialSet/NerveAdjunction.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -575,7 +575,7 @@ instance preservesBinaryProduct (X Y : SSet) :
575575
`Discrete Limits.WalkingPair`. -/
576576
instance preservesBinaryProducts :
577577
PreservesLimitsOfShape (Discrete Limits.WalkingPair) hoFunctor where
578-
preservesLimit {F} := preservesLimit_of_iso_diagram hoFunctor (id (diagramIsoPair F).symm)
578+
preservesLimit {F} := preservesLimit_of_iso_diagram hoFunctor (diagramIsoPair F).symm
579579

580580
/-- The functor `hoFunctor : SSet ⥤ Cat` preserves finite products of simplicial sets. -/
581581
instance preservesFiniteProducts : PreservesFiniteProducts hoFunctor :=

Mathlib/Analysis/Calculus/IteratedDeriv/ConvergenceOnBall.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -54,4 +54,4 @@ theorem AnalyticOn.hasFPowerSeriesOnBall :
5454
0 < p.radius → AnalyticOn 𝕜 f (EMetric.ball x p.radius) →
5555
HasFPowerSeriesOnBall f p x p.radius := by
5656
intro hr hs
57-
exact hs.hasFPowerSeriesOnSubball hr (by rfl)
57+
exact hs.hasFPowerSeriesOnSubball hr le_rfl

Mathlib/Analysis/Distribution/SchwartzSpace.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -531,7 +531,7 @@ def _root_.HasCompactSupport.toSchwartzMap {f : E → F} (h₁ : HasCompactSuppo
531531
set g := fun x ↦ ‖x‖ ^ k * ‖iteratedFDeriv ℝ n f x‖
532532
have hg₁ : Continuous g := by
533533
apply Continuous.mul (by fun_prop)
534-
exact (h₂.of_le (right_eq_inf.mp rfl)).continuous_iteratedFDeriv'.norm
534+
exact (h₂.of_le (mod_cast le_top)).continuous_iteratedFDeriv'.norm
535535
have hg₂ : HasCompactSupport g := (h₁.iteratedFDeriv _).norm.mul_left
536536
obtain ⟨x₀, hx₀⟩ := hg₁.exists_forall_ge_of_hasCompactSupport hg₂
537537
exact ⟨g x₀, hx₀⟩

Mathlib/Analysis/Fourier/AddCircle.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -431,7 +431,7 @@ theorem hasSum_sq_fourierCoeffOn
431431
{a b : ℝ} {f : ℝ → ℂ} (hab : a < b) (hL2 : MemLp f 2 (volume.restrict (Ioc a b))) :
432432
HasSum (fun i => ‖fourierCoeffOn hab f i‖ ^ 2) ((b - a)⁻¹ • ∫ x in a..b, ‖f x‖ ^ 2) := by
433433
haveI := Fact.mk (by linarith : 0 < b - a)
434-
rw [←add_sub_cancel a b] at hL2
434+
rw [← add_sub_cancel a b] at hL2
435435
have h := hL2.memLp_liftIoc.haarAddCircle
436436
convert hasSum_sq_fourierCoeff h.toLp using 1
437437
· simp [fourierCoeff_congr_ae h.coeFn_toLp, fourierCoeff_liftIoc_eq]

0 commit comments

Comments
 (0)