File tree Expand file tree Collapse file tree 3 files changed +46
-1
lines changed
Analysis/NormedSpace/Star Expand file tree Collapse file tree 3 files changed +46
-1
lines changed Original file line number Diff line number Diff line change @@ -449,3 +449,28 @@ theorem AlgEquiv.spectrum_eq {F R A B : Type*} [CommSemiring R] [Ring A] [Ring B
449449 Set.Subset.antisymm (AlgHom.spectrum_apply_subset _ _) <| by
450450 simpa only [AlgEquiv.coe_algHom, AlgEquiv.coe_coe_symm_apply_coe_apply] using
451451 AlgHom.spectrum_apply_subset (f : A ≃ₐ[R] B).symm (f a)
452+
453+ section ConjugateUnits
454+
455+ variable {R A : Type *} [CommSemiring R] [Ring A] [Algebra R A]
456+
457+ /-- Conjugation by a unit preserves the spectrum, inverse on right. -/
458+ @[simp]
459+ lemma spectrum.units_conjugate {a : A} {u : Aˣ} :
460+ spectrum R (u * a * u⁻¹) = spectrum R a := by
461+ suffices ∀ (b : A) (v : Aˣ), spectrum R (v * b * v⁻¹) ⊆ spectrum R b by
462+ refine le_antisymm (this a u) ?_
463+ apply le_of_eq_of_le ?_ <| this (u * a * u⁻¹) u⁻¹
464+ simp [mul_assoc]
465+ intro a u μ hμ
466+ rw [spectrum.mem_iff] at hμ ⊢
467+ contrapose! hμ
468+ simpa [mul_sub, sub_mul, Algebra.right_comm] using u.isUnit.mul hμ |>.mul u⁻¹.isUnit
469+
470+ /-- Conjugation by a unit preserves the spectrum, inverse on left. -/
471+ @[simp]
472+ lemma spectrum.units_conjugate' {a : A} {u : Aˣ} :
473+ spectrum R (u⁻¹ * a * u) = spectrum R a := by
474+ simpa using spectrum.units_conjugate (u := u⁻¹)
475+
476+ end ConjugateUnits
Original file line number Diff line number Diff line change @@ -5,6 +5,7 @@ Authors: Shing Tak Lam, Frédéric Dupuis
55-/
66import Mathlib.Algebra.Group.Submonoid.Operations
77import Mathlib.Algebra.Star.SelfAdjoint
8+ import Mathlib.Algebra.Algebra.Spectrum
89
910#align_import algebra.star.unitary from "leanprover-community/mathlib" @"247a102b14f3cebfee126293341af5f6bed00237"
1011
@@ -239,4 +240,24 @@ instance : HasDistribNeg (unitary R) :=
239240
240241end Ring
241242
243+ section UnitaryConjugate
244+
245+ universe u
246+
247+ variable {R A : Type *} [CommSemiring R] [Ring A] [Algebra R A] [StarMul A]
248+
249+ /-- Unitary conjugation preserves the spectrum, star on left. -/
250+ @[simp]
251+ lemma spectrum.unitary_conjugate {a : A} {u : unitary A} :
252+ spectrum R (u * a * (star u : A)) = spectrum R a :=
253+ spectrum.units_conjugate (u := unitary.toUnits u)
254+
255+ /-- Unitary conjugation preserves the spectrum, star on right. -/
256+ @[simp]
257+ lemma spectrum.unitary_conjugate' {a : A} {u : unitary A} :
258+ spectrum R ((star u : A) * a * u) = spectrum R a := by
259+ simpa using spectrum.unitary_conjugate (u := star u)
260+
261+ end UnitaryConjugate
262+
242263end unitary
Original file line number Diff line number Diff line change @@ -33,7 +33,6 @@ To get a C⋆-algebra `E` over field `𝕜`, use
3333
3434 -/
3535
36-
3736open Topology
3837
3938local postfix :max "⋆" => star
You can’t perform that action at this time.
0 commit comments