@@ -692,7 +692,7 @@ Fourier integral of the original function by `2πI ⟪v, w⟫`. -/
692692theorem fourierIntegral_fderiv
693693 (hf : Integrable f) (h'f : Differentiable ℝ f) (hf' : Integrable (fderiv ℝ f)) :
694694 𝓕 (fderiv ℝ f) = fourierSMulRight (-innerSL ℝ) (𝓕 f) := by
695- rw [← innerSL_real_flip V]
695+ rw [← flip_innerSL_real V]
696696 exact VectorFourier.fourierIntegral_fderiv (innerSL ℝ) hf h'f hf'
697697
698698/-- If `‖v‖^n * ‖f v‖` is integrable, then the Fourier transform of `f` is `C^n`. -/
@@ -715,7 +715,7 @@ theorem fourierIntegral_iteratedFDeriv {N : ℕ∞} (hf : ContDiff ℝ N f)
715715 (h'f : ∀ (n : ℕ), n ≤ N → Integrable (iteratedFDeriv ℝ n f)) {n : ℕ} (hn : n ≤ N) :
716716 𝓕 (iteratedFDeriv ℝ n f)
717717 = (fun w ↦ fourierPowSMulRight (-innerSL ℝ) (𝓕 f) w n) := by
718- rw [← innerSL_real_flip V]
718+ rw [← flip_innerSL_real V]
719719 exact VectorFourier.fourierIntegral_iteratedFDeriv (innerSL ℝ) hf h'f hn
720720
721721/-- One can bound `‖w‖^n * ‖D^k (𝓕 f) w‖` in terms of integrals of the derivatives of `f` (or order
@@ -733,7 +733,7 @@ lemma pow_mul_norm_iteratedFDeriv_fourierIntegral_le
733733 ∫ (v : V), ‖v‖ ^ p.1 * ‖iteratedFDeriv ℝ p.2 f v‖ ∂volume)) := by
734734 have := VectorFourier.pow_mul_norm_iteratedFDeriv_fourierIntegral_le (innerSL ℝ) hf h'f hk hn
735735 w w
736- simp only [innerSL_apply _ w w, real_inner_self_eq_norm_sq w, abs_pow, abs_norm,
736+ simp only [innerSL_apply_apply _ w w, real_inner_self_eq_norm_sq w, abs_pow, abs_norm,
737737 mul_assoc] at this
738738 rwa [pow_two, mul_pow, mul_assoc] at this
739739 rcases eq_or_ne n 0 with rfl | hn
@@ -793,7 +793,7 @@ theorem fourierIntegral_deriv
793793 have : 𝓕 (deriv f) x = 𝓕 (fderiv ℝ f) x 1 := by
794794 simp only [fourierIntegral_continuousLinearMap_apply I, fderiv_deriv]
795795 rw [this, fourierIntegral_fderiv hf h'f I]
796- simp only [fourierSMulRight_apply, ContinuousLinearMap.neg_apply, innerSL_apply , smul_smul,
796+ simp only [fourierSMulRight_apply, ContinuousLinearMap.neg_apply, innerSL_apply_apply , smul_smul,
797797 RCLike.inner_apply', conj_trivial, mul_one, neg_smul, smul_neg, neg_neg, neg_mul, ← coe_smul]
798798
799799theorem iteratedDeriv_fourierIntegral {f : ℝ → E} {N : ℕ∞} {n : ℕ}
@@ -809,7 +809,7 @@ theorem iteratedDeriv_fourierIntegral {f : ℝ → E} {N : ℕ∞} {n : ℕ}
809809 fourierIntegral_eq, fourierIntegral_eq]
810810 congr with y
811811 suffices (-(2 * π * I)) ^ n • y ^ n • f y = (-(2 * π * I * y)) ^ n • f y by
812- simpa [innerSL_apply _]
812+ simpa [innerSL_apply_apply _]
813813 simp only [← neg_mul, ← coe_smul, smul_smul, mul_pow, ofReal_pow, mul_assoc]
814814
815815theorem fourierIntegral_iteratedDeriv {f : ℝ → E} {N : ℕ∞} {n : ℕ} (hf : ContDiff ℝ N f)
0 commit comments