Skip to content

Commit aff69c9

Browse files
committed
chore(Analysis/InnerProductSpace/{Dual, LinearMap}): some renames (#31625)
Current naming is confusing, `innerSL_apply` means `innerSL x y` but `innerSL_apply_coe` means `⇑(innerSL x)`...? So this PR renames these (and others). Renames: `Analysis/InnerProductSpace/LinearMap`: - `innerₛₗ_apply_coe` -> `coe_innerₛₗ_apply` - `innerₛₗ_apply` -> `innerₛₗ_apply_apply` - `innerₗ_apply` -> `innerₗ_apply_apply` - `innerSL_apply_coe` -> `coe_innerSL_apply` - `innerSL_apply` -> `innerSL_apply_apply` - `innerSLFlip_apply` -> `innerSLFlip_apply_apply` - `innerSL_real_flip` -> `flip_innerSL_real` `Analysis/InnerProductSpace/Dual`: - `InnerProductSpace.toDualMap_apply` -> `InnerProductSpace.toDualMap_apply_apply` - `InnerProductSpace.toDual_apply` -> `InnerProductSpace.toDual_apply_apply`
1 parent b8d4bc6 commit aff69c9

File tree

10 files changed

+39
-34
lines changed

10 files changed

+39
-34
lines changed

Mathlib/Analysis/Fourier/FourierTransformDeriv.lean

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -692,7 +692,7 @@ Fourier integral of the original function by `2πI ⟪v, w⟫`. -/
692692
theorem fourierIntegral_fderiv
693693
(hf : Integrable f) (h'f : Differentiable ℝ f) (hf' : Integrable (fderiv ℝ f)) :
694694
𝓕 (fderiv ℝ f) = fourierSMulRight (-innerSL ℝ) (𝓕 f) := by
695-
rw [← innerSL_real_flip V]
695+
rw [← flip_innerSL_real V]
696696
exact VectorFourier.fourierIntegral_fderiv (innerSL ℝ) hf h'f hf'
697697

698698
/-- If `‖v‖^n * ‖f v‖` is integrable, then the Fourier transform of `f` is `C^n`. -/
@@ -715,7 +715,7 @@ theorem fourierIntegral_iteratedFDeriv {N : ℕ∞} (hf : ContDiff ℝ N f)
715715
(h'f : ∀ (n : ℕ), n ≤ N → Integrable (iteratedFDeriv ℝ n f)) {n : ℕ} (hn : n ≤ N) :
716716
𝓕 (iteratedFDeriv ℝ n f)
717717
= (fun w ↦ fourierPowSMulRight (-innerSL ℝ) (𝓕 f) w n) := by
718-
rw [← innerSL_real_flip V]
718+
rw [← flip_innerSL_real V]
719719
exact VectorFourier.fourierIntegral_iteratedFDeriv (innerSL ℝ) hf h'f hn
720720

721721
/-- One can bound `‖w‖^n * ‖D^k (𝓕 f) w‖` in terms of integrals of the derivatives of `f` (or order
@@ -733,7 +733,7 @@ lemma pow_mul_norm_iteratedFDeriv_fourierIntegral_le
733733
∫ (v : V), ‖v‖ ^ p.1 * ‖iteratedFDeriv ℝ p.2 f v‖ ∂volume)) := by
734734
have := VectorFourier.pow_mul_norm_iteratedFDeriv_fourierIntegral_le (innerSL ℝ) hf h'f hk hn
735735
w w
736-
simp only [innerSL_apply _ w w, real_inner_self_eq_norm_sq w, abs_pow, abs_norm,
736+
simp only [innerSL_apply_apply _ w w, real_inner_self_eq_norm_sq w, abs_pow, abs_norm,
737737
mul_assoc] at this
738738
rwa [pow_two, mul_pow, mul_assoc] at this
739739
rcases eq_or_ne n 0 with rfl | hn
@@ -793,7 +793,7 @@ theorem fourierIntegral_deriv
793793
have : 𝓕 (deriv f) x = 𝓕 (fderiv ℝ f) x 1 := by
794794
simp only [fourierIntegral_continuousLinearMap_apply I, fderiv_deriv]
795795
rw [this, fourierIntegral_fderiv hf h'f I]
796-
simp only [fourierSMulRight_apply, ContinuousLinearMap.neg_apply, innerSL_apply, smul_smul,
796+
simp only [fourierSMulRight_apply, ContinuousLinearMap.neg_apply, innerSL_apply_apply, smul_smul,
797797
RCLike.inner_apply', conj_trivial, mul_one, neg_smul, smul_neg, neg_neg, neg_mul, ← coe_smul]
798798

799799
theorem iteratedDeriv_fourierIntegral {f : ℝ → E} {N : ℕ∞} {n : ℕ}
@@ -809,7 +809,7 @@ theorem iteratedDeriv_fourierIntegral {f : ℝ → E} {N : ℕ∞} {n : ℕ}
809809
fourierIntegral_eq, fourierIntegral_eq]
810810
congr with y
811811
suffices (-(2 * π * I)) ^ n • y ^ n • f y = (-(2 * π * I * y)) ^ n • f y by
812-
simpa [innerSL_apply _]
812+
simpa [innerSL_apply_apply _]
813813
simp only [← neg_mul, ← coe_smul, smul_smul, mul_pow, ofReal_pow, mul_assoc]
814814

815815
theorem fourierIntegral_iteratedDeriv {f : ℝ → E} {N : ℕ∞} {n : ℕ} (hf : ContDiff ℝ N f)

Mathlib/Analysis/InnerProductSpace/Adjoint.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -74,7 +74,7 @@ theorem adjointAux_apply (A : E →L[𝕜] F) (x : F) :
7474
rfl
7575

7676
theorem adjointAux_inner_left (A : E →L[𝕜] F) (x : E) (y : F) : ⟪adjointAux A y, x⟫ = ⟪y, A x⟫ := by
77-
rw [adjointAux_apply, toDual_symm_apply, toSesqForm_apply_coe, coe_comp', innerSL_apply_coe,
77+
rw [adjointAux_apply, toDual_symm_apply, toSesqForm_apply_coe, coe_comp', coe_innerSL_apply,
7878
Function.comp_apply]
7979

8080
theorem adjointAux_inner_right (A : E →L[𝕜] F) (x : E) (y : F) :

Mathlib/Analysis/InnerProductSpace/Dual.lean

Lines changed: 8 additions & 7 deletions
Original file line numberDiff line numberDiff line change
@@ -66,8 +66,9 @@ def toDualMap : E →ₗᵢ⋆[𝕜] StrongDual 𝕜 E :=
6666
variable {E}
6767

6868
@[simp]
69-
theorem toDualMap_apply {x y : E} : toDualMap 𝕜 E x y = ⟪x, y⟫ :=
70-
rfl
69+
theorem toDualMap_apply_apply {x y : E} : toDualMap 𝕜 E x y = ⟪x, y⟫ := rfl
70+
71+
@[deprecated (since := "2025-11-15")] alias toDualMap_apply := toDualMap_apply_apply
7172

7273
variable {𝕜} in
7374
@[simp]
@@ -108,8 +109,7 @@ theorem ext_inner_left_basis {ι : Type*} {x y : E} (b : Basis ι 𝕜 E)
108109
apply (toDualMap 𝕜 E).map_eq_iff.mp
109110
refine (Function.Injective.eq_iff ContinuousLinearMap.coe_injective).mp (b.ext ?_)
110111
intro i
111-
simp only [ContinuousLinearMap.coe_coe]
112-
rw [toDualMap_apply, toDualMap_apply]
112+
simp only [ContinuousLinearMap.coe_coe, toDualMap_apply_apply]
113113
rw [← inner_conj_symm]
114114
conv_rhs => rw [← inner_conj_symm]
115115
exact congr_arg conj (h i)
@@ -168,12 +168,13 @@ def toDual : E ≃ₗᵢ⋆[𝕜] StrongDual 𝕜 E :=
168168
variable {𝕜} {E}
169169

170170
@[simp]
171-
theorem toDual_apply {x y : E} : toDual 𝕜 E x y = ⟪x, y⟫ :=
172-
rfl
171+
theorem toDual_apply_apply {x y : E} : toDual 𝕜 E x y = ⟪x, y⟫ := rfl
172+
173+
@[deprecated (since := "2025-11-15")] alias toDual_apply := toDual_apply_apply
173174

174175
@[simp]
175176
theorem toDual_symm_apply {x : E} {y : StrongDual 𝕜 E} : ⟪(toDual 𝕜 E).symm y, x⟫ = y x := by
176-
rw [← toDual_apply]
177+
rw [← toDual_apply_apply]
177178
simp only [LinearIsometryEquiv.apply_symm_apply]
178179

179180
/-- Maps a bounded sesquilinear form to its continuous linear map,

Mathlib/Analysis/InnerProductSpace/LinearMap.lean

Lines changed: 16 additions & 8 deletions
Original file line numberDiff line numberDiff line change
@@ -162,11 +162,11 @@ def innerₛₗ : E →ₗ⋆[𝕜] E →ₗ[𝕜] 𝕜 :=
162162
inner_add_right fun _ _ _ => inner_smul_right _ _ _
163163

164164
@[simp]
165-
theorem innerₛₗ_apply_coe (v : E) : ⇑(innerₛₗ 𝕜 v) = fun w => ⟪v, w⟫ :=
165+
theorem coe_innerₛₗ_apply (v : E) : ⇑(innerₛₗ 𝕜 v) = fun w => ⟪v, w⟫ :=
166166
rfl
167167

168168
@[simp]
169-
theorem innerₛₗ_apply (v w : E) : innerₛₗ 𝕜 v w = ⟪v, w⟫ :=
169+
theorem innerₛₗ_apply_apply (v w : E) : innerₛₗ 𝕜 v w = ⟪v, w⟫ :=
170170
rfl
171171

172172
variable (F)
@@ -179,21 +179,21 @@ def innerₗ : F →ₗ[ℝ] F →ₗ[ℝ] ℝ := innerₛₗ ℝ
179179

180180
variable {F}
181181

182-
@[simp] lemma innerₗ_apply (v w : F) : innerₗ F v w = ⟪v, w⟫_ℝ := rfl
182+
@[simp] lemma innerₗ_apply_apply (v w : F) : innerₗ F v w = ⟪v, w⟫_ℝ := rfl
183183

184184
/-- The inner product as a continuous sesquilinear map. Note that `toDualMap` (resp. `toDual`)
185185
in `InnerProductSpace.Dual` is a version of this given as a linear isometry (resp. linear
186186
isometric equivalence). -/
187187
def innerSL : E →L⋆[𝕜] E →L[𝕜] 𝕜 :=
188188
LinearMap.mkContinuous₂ (innerₛₗ 𝕜) 1 fun x y => by
189-
simp only [norm_inner_le_norm, one_mul, innerₛₗ_apply]
189+
simp only [norm_inner_le_norm, one_mul, innerₛₗ_apply_apply]
190190

191191
@[simp]
192-
theorem innerSL_apply_coe (v : E) : ⇑(innerSL 𝕜 v) = fun w => ⟪v, w⟫ :=
192+
theorem coe_innerSL_apply (v : E) : ⇑(innerSL 𝕜 v) = fun w => ⟪v, w⟫ :=
193193
rfl
194194

195195
@[simp]
196-
theorem innerSL_apply (v w : E) : innerSL 𝕜 v w = ⟪v, w⟫ :=
196+
theorem innerSL_apply_apply (v w : E) : innerSL 𝕜 v w = ⟪v, w⟫ :=
197197
rfl
198198

199199
/-- The inner product as a continuous sesquilinear map, with the two arguments flipped. -/
@@ -202,14 +202,22 @@ def innerSLFlip : E →L[𝕜] E →L⋆[𝕜] 𝕜 :=
202202
(innerSL 𝕜)
203203

204204
@[simp]
205-
theorem innerSLFlip_apply (x y : E) : innerSLFlip 𝕜 x y = ⟪y, x⟫ :=
205+
theorem innerSLFlip_apply_apply (x y : E) : innerSLFlip 𝕜 x y = ⟪y, x⟫ :=
206206
rfl
207207

208208
variable (F) in
209-
@[simp] lemma innerSL_real_flip : (innerSL ℝ (E := F)).flip = innerSL ℝ (E := F) := by
209+
@[simp] lemma flip_innerSL_real : (innerSL ℝ (E := F)).flip = innerSL ℝ (E := F) := by
210210
ext v w
211211
exact real_inner_comm _ _
212212

213+
@[deprecated (since := "2025-11-15")] alias innerₛₗ_apply_coe := coe_innerₛₗ_apply
214+
@[deprecated (since := "2025-11-15")] alias innerₛₗ_apply := innerₛₗ_apply_apply
215+
@[deprecated (since := "2025-11-15")] alias innerₗ_apply := innerₗ_apply_apply
216+
@[deprecated (since := "2025-11-15")] alias innerSL_apply_coe := coe_innerSL_apply
217+
@[deprecated (since := "2025-11-15")] alias innerSL_apply := innerSL_apply_apply
218+
@[deprecated (since := "2025-11-15")] alias innerSLFlip_apply := innerSLFlip_apply_apply
219+
@[deprecated (since := "2025-11-15")] alias innerSL_real_flip := flip_innerSL_real
220+
213221
variable {𝕜}
214222

215223
namespace ContinuousLinearMap

Mathlib/Analysis/InnerProductSpace/LinearPMap.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -207,7 +207,7 @@ theorem toPMap_adjoint_eq_adjoint_toPMap_of_dense (hp : Dense (p : Set E)) :
207207
(A.toPMap p).adjoint = A.adjoint.toPMap ⊤ := by
208208
ext x y hxy
209209
· simp only [LinearMap.toPMap_domain, Submodule.mem_top, iff_true,
210-
LinearPMap.mem_adjoint_domain_iff, LinearMap.coe_comp, innerₛₗ_apply_coe]
210+
LinearPMap.mem_adjoint_domain_iff, LinearMap.coe_comp, coe_innerₛₗ_apply]
211211
exact ((innerSL 𝕜 x).comp <| A.comp <| Submodule.subtypeL _).cont
212212
refine LinearPMap.adjoint_apply_eq hp _ fun v => ?_
213213
simp only [adjoint_inner_left, LinearMap.toPMap_apply, coe_coe]

Mathlib/Analysis/InnerProductSpace/Rayleigh.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -101,7 +101,7 @@ theorem _root_.LinearMap.IsSymmetric.hasStrictFDerivAt_reApplyInnerSelf {T : F
101101
convert T.hasStrictFDerivAt.inner ℝ (hasStrictFDerivAt_id x₀) using 1
102102
ext y
103103
rw [ContinuousLinearMap.smul_apply, ContinuousLinearMap.comp_apply, fderivInnerCLM_apply,
104-
ContinuousLinearMap.prod_apply, innerSL_apply, id, ContinuousLinearMap.id_apply,
104+
ContinuousLinearMap.prod_apply, innerSL_apply_apply, id, ContinuousLinearMap.id_apply,
105105
hT.apply_clm x₀ y, real_inner_comm _ x₀, two_smul]
106106

107107
variable [CompleteSpace F] {T : F →L[ℝ] F}

Mathlib/Analysis/InnerProductSpace/WeakOperatorTopology.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -33,7 +33,7 @@ open Filter in
3333
lemma tendsto_iff_forall_inner_apply_tendsto [CompleteSpace F] {α : Type*} {l : Filter α}
3434
{f : α → E →WOT[𝕜] F} {A : E →WOT[𝕜] F} :
3535
Tendsto f l (𝓝 A) ↔ ∀ x y, Tendsto (fun a => ⟪y, (f a) x⟫_𝕜) l (𝓝 ⟪y, A x⟫_𝕜) := by
36-
simp_rw [tendsto_iff_forall_dual_apply_tendsto, ← InnerProductSpace.toDual_apply]
36+
simp_rw [tendsto_iff_forall_dual_apply_tendsto]
3737
exact .symm <| forall_congr' fun _ ↦
3838
Equiv.forall_congr (InnerProductSpace.toDual 𝕜 F) fun _ ↦ Iff.rfl
3939

Mathlib/Analysis/InnerProductSpace/l2Space.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -458,7 +458,7 @@ protected theorem hasSum_inner_mul_inner (b : HilbertBasis ι 𝕜 E) (x y : E)
458458
HasSum (fun i => ⟪x, b i⟫ * ⟪b i, y⟫) ⟪x, y⟫ := by
459459
convert (b.hasSum_repr y).mapL (innerSL 𝕜 x) using 1
460460
ext i
461-
rw [innerSL_apply, b.repr_apply_apply, inner_smul_right, mul_comm]
461+
rw [innerSL_apply_apply, b.repr_apply_apply, inner_smul_right, mul_comm]
462462

463463
protected theorem summable_inner_mul_inner (b : HilbertBasis ι 𝕜 E) (x y : E) :
464464
Summable fun i => ⟪x, b i⟫ * ⟪b i, y⟫ :=

Mathlib/Geometry/Manifold/Instances/Sphere.lean

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -228,8 +228,8 @@ theorem stereo_left_inv (hv : ‖v‖ = 1) {x : sphere (0 : E) 1} (hx : (x : E)
228228
linear_combination 4 * (a - 1) * pythag
229229

230230
theorem stereo_right_inv (hv : ‖v‖ = 1) (w : (ℝ ∙ v)ᗮ) : stereoToFun v (stereoInvFun hv w) = w := by
231-
simp only [stereoToFun, stereoInvFun, stereoInvFunAux, smul_add, map_add, map_smul, innerSL_apply,
232-
Submodule.orthogonalProjection_mem_subspace_eq_self]
231+
simp only [stereoToFun, stereoInvFun, stereoInvFunAux, smul_add, map_add, map_smul,
232+
innerSL_apply_apply, Submodule.orthogonalProjection_mem_subspace_eq_self]
233233
have h₁ : (ℝ ∙ v)ᗮ.orthogonalProjection v = 0 :=
234234
Submodule.orthogonalProjection_orthogonalComplement_singleton_eq_zero v
235235
have h₂ : ⟪v, w⟫ = 0 := Submodule.mem_orthogonal_singleton_iff_inner_right.mp w.2
@@ -405,7 +405,7 @@ instance EuclideanSpace.instIsManifoldSphere
405405
simp only [modelWithCornersSelf_coe, modelWithCornersSelf_coe_symm,
406406
Set.range_id, Set.inter_univ, Set.univ_inter, Set.compl_singleton_eq, Set.preimage_setOf_eq]
407407
simp only [id, comp_apply, Submodule.subtypeL_apply, OpenPartialHomeomorph.coe_coe_symm,
408-
innerSL_apply, Ne, sphere_ext_iff, real_inner_comm (v' : E)]
408+
innerSL_apply_apply, Ne, sphere_ext_iff, real_inner_comm (v' : E)]
409409
rfl)
410410

411411
instance (n : ℕ) : IsManifold (𝓡 n) ω (sphere (0 : EuclideanSpace ℝ (Fin (n + 1))) 1) :=

Mathlib/Probability/Moments/CovarianceBilin.lean

Lines changed: 2 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -63,8 +63,7 @@ lemma covarianceBilin_of_not_memLp (h : ¬MemLp id 2 μ) :
6363

6464
lemma covarianceBilin_apply [CompleteSpace E] [IsFiniteMeasure μ] (h : MemLp id 2 μ) (x y : E) :
6565
covarianceBilin μ x y = ∫ z, ⟪x, z - μ[id]⟫ * ⟪y, z - μ[id]⟫ ∂μ := by
66-
simp_rw [covarianceBilin, ContinuousLinearMap.bilinearComp_apply, covarianceBilinDual_apply' h]
67-
simp only [LinearIsometry.coe_toContinuousLinearMap, id_eq, toDualMap_apply]
66+
simp [covarianceBilin, covarianceBilinDual_apply' h]
6867

6968
lemma covarianceBilin_comm (x y : E) :
7069
covarianceBilin μ x y = covarianceBilin μ y x := by
@@ -203,10 +202,7 @@ lemma covarianceOperator_of_not_memLp (hμ : ¬MemLp id 2 μ) :
203202

204203
lemma covarianceOperator_inner (hμ : MemLp id 2 μ) (x y : E) :
205204
⟪covarianceOperator μ x, y⟫ = ∫ z, ⟪x, z⟫ * ⟪y, z⟫ ∂μ := by
206-
simp only [covarianceOperator, continuousLinearMapOfBilin_apply,
207-
ContinuousLinearMap.bilinearComp_apply, LinearIsometry.coe_toContinuousLinearMap]
208-
rw [uncenteredCovarianceBilinDual_apply hμ]
209-
simp_rw [toDualMap_apply]
205+
simp [covarianceOperator, uncenteredCovarianceBilinDual_apply hμ]
210206

211207
lemma covarianceOperator_apply (hμ : MemLp id 2 μ) (x : E) :
212208
covarianceOperator μ x = ∫ y, ⟪x, y⟫ • y ∂μ := by

0 commit comments

Comments
 (0)