Skip to content

Commit bcdf2b7

Browse files
committed
chore(Analysis/Fourier): rename theorems (#31687)
1 parent e64a336 commit bcdf2b7

File tree

13 files changed

+265
-126
lines changed

13 files changed

+265
-126
lines changed

β€ŽMathlib/Analysis/Distribution/FourierSchwartz.leanβ€Ž

Lines changed: 23 additions & 16 deletions
Original file line numberDiff line numberDiff line change
@@ -37,21 +37,21 @@ Schwartz space. -/
3737
def fourierTransformCLM : 𝓒(V, E) β†’L[π•œ] 𝓒(V, E) := by
3838
refine mkCLM ((𝓕 : (V β†’ E) β†’ (V β†’ E)) Β·) ?_ ?_ ?_ ?_
3939
Β· intro f g x
40-
simp only [fourierIntegral_eq, add_apply, smul_add]
40+
simp only [fourier_eq, add_apply, smul_add]
4141
rw [integral_add]
4242
Β· exact (fourierIntegral_convergent_iff _).2 f.integrable
4343
Β· exact (fourierIntegral_convergent_iff _).2 g.integrable
4444
Β· intro c f x
45-
simp only [fourierIntegral_eq, smul_apply, smul_comm _ c, integral_smul, RingHom.id_apply]
45+
simp only [fourier_eq, smul_apply, smul_comm _ c, integral_smul, RingHom.id_apply]
4646
Β· intro f
47-
exact Real.contDiff_fourierIntegral (fun n _ ↦ integrable_pow_mul volume f n)
47+
exact Real.contDiff_fourier (fun n _ ↦ integrable_pow_mul volume f n)
4848
· rintro ⟨k, n⟩
4949
refine ⟨Finset.range (n + integrablePower (volume : Measure V) + 1) Γ—Λ’ Finset.range (k + 1),
5050
(2 * Ο€) ^ n * (2 * ↑n + 2) ^ k * (Finset.range (n + 1) Γ—Λ’ Finset.range (k + 1)).card
5151
* 2 ^ integrablePower (volume : Measure V) *
5252
(∫ (x : V), (1 + β€–xβ€–) ^ (- (integrablePower (volume : Measure V) : ℝ))) * 2,
5353
⟨by positivity, fun f x ↦ ?_⟩⟩
54-
apply (pow_mul_norm_iteratedFDeriv_fourierIntegral_le (f.smooth ⊀)
54+
apply (pow_mul_norm_iteratedFDeriv_fourier_le (f.smooth ⊀)
5555
(fun k n _hk _hn ↦ integrable_pow_mul_iteratedFDeriv _ f k n) le_top le_top x).trans
5656
simp only [mul_assoc]
5757
gcongr
@@ -82,7 +82,7 @@ def fourierTransformCLM : 𝓒(V, E) β†’L[π•œ] 𝓒(V, E) := by
8282
_ = _ := by simp [mul_assoc]
8383

8484
instance instFourierTransform : FourierTransform 𝓒(V, E) 𝓒(V, E) where
85-
fourierTransform f := fourierTransformCLM β„‚ f
85+
fourier f := fourierTransformCLM β„‚ f
8686

8787
lemma fourier_coe (f : 𝓒(V, E)) : 𝓕 f = 𝓕 (f : V β†’ E) := rfl
8888

@@ -95,13 +95,13 @@ theorem fourierTransformCLM_apply (f : 𝓒(V, E)) :
9595
fourierTransformCLM π•œ f = 𝓕 f := rfl
9696

9797
instance instFourierTransformInv : FourierTransformInv 𝓒(V, E) 𝓒(V, E) where
98-
fourierTransformInv := (compCLMOfContinuousLinearEquiv β„‚ (LinearIsometryEquiv.neg ℝ (E := V)))
98+
fourierInv := (compCLMOfContinuousLinearEquiv β„‚ (LinearIsometryEquiv.neg ℝ (E := V)))
9999
∘L (fourierTransformCLM β„‚)
100100

101101
lemma fourierInv_coe (f : 𝓒(V, E)) :
102102
𝓕⁻ f = 𝓕⁻ (f : V β†’ E) := by
103103
ext x
104-
exact (fourierIntegralInv_eq_fourierIntegral_neg f x).symm
104+
exact (fourierInv_eq_fourier_neg f x).symm
105105

106106
instance instFourierInvModule : FourierInvModule π•œ 𝓒(V, E) 𝓒(V, E) where
107107
fourierInv_add := ContinuousLinearMap.map_add _
@@ -111,23 +111,24 @@ instance instFourierInvModule : FourierInvModule π•œ 𝓒(V, E) 𝓒(V, E) wher
111111
variable [CompleteSpace E]
112112

113113
instance instFourierPair : FourierPair 𝓒(V, E) 𝓒(V, E) where
114-
inv_fourier := by
114+
fourierInv_fourier_eq := by
115115
intro f
116116
ext x
117-
rw [fourierInv_coe, fourier_coe, f.continuous.fourier_inversion f.integrable (𝓕 f).integrable]
117+
rw [fourierInv_coe, fourier_coe, f.continuous.fourierInv_fourier_eq f.integrable
118+
(𝓕 f).integrable]
118119

119120
instance instFourierInvPair : FourierInvPair 𝓒(V, E) 𝓒(V, E) where
120-
fourier_inv := by
121+
fourier_fourierInv_eq := by
121122
intro f
122123
ext x
123-
rw [fourier_coe, fourierInv_coe, f.continuous.fourier_inversion_inv f.integrable
124+
rw [fourier_coe, fourierInv_coe, f.continuous.fourier_fourierInv_eq f.integrable
124125
(𝓕 f).integrable]
125126

126127
@[deprecated (since := "2025-11-13")]
127-
alias fourier_inversion := FourierTransform.inv_fourier
128+
alias fourier_inversion := FourierTransform.fourierInv_fourier_eq
128129

129130
@[deprecated (since := "2025-11-13")]
130-
alias fourier_inversion_inv := FourierTransform.fourier_inv
131+
alias fourier_inversion_inv := FourierTransform.fourier_fourierInv_eq
131132

132133
/-- The Fourier transform on a real inner product space, as a continuous linear equiv on the
133134
Schwartz space. -/
@@ -154,22 +155,28 @@ variable [CompleteSpace E] [CompleteSpace F]
154155

155156
/-- The Fourier transform satisfies `∫ 𝓕 f * g = ∫ f * 𝓕 g`, i.e., it is self-adjoint.
156157
Version where the multiplication is replaced by a general bilinear form `M`. -/
157-
theorem integral_bilin_fourierIntegral_eq (f : 𝓒(V, E)) (g : 𝓒(V, F)) (M : E β†’L[β„‚] F β†’L[β„‚] G) :
158+
theorem integral_bilin_fourier_eq (f : 𝓒(V, E)) (g : 𝓒(V, F)) (M : E β†’L[β„‚] F β†’L[β„‚] G) :
158159
∫ ΞΎ, M (𝓕 f ΞΎ) (g ΞΎ) = ∫ x, M (f x) (𝓕 g x) := by
159160
simpa using VectorFourier.integral_bilin_fourierIntegral_eq_flip M (L := (innerβ‚— V))
160161
continuous_fourierChar continuous_inner f.integrable g.integrable
161162

162-
theorem integral_sesq_fourierIntegral_eq (f : 𝓒(V, E)) (g : 𝓒(V, F)) (M : E β†’L⋆[β„‚] F β†’L[β„‚] G) :
163+
@[deprecated (since := "2025-11-16")]
164+
alias integral_bilin_fourierIntegral_eq := integral_bilin_fourier_eq
165+
166+
theorem integral_sesq_fourier_eq (f : 𝓒(V, E)) (g : 𝓒(V, F)) (M : E β†’L⋆[β„‚] F β†’L[β„‚] G) :
163167
∫ ΞΎ, M (𝓕 f ΞΎ) (g ΞΎ) = ∫ x, M (f x) (𝓕⁻ g x) := by
164168
simpa [fourierInv_coe] using VectorFourier.integral_sesq_fourierIntegral_eq_neg_flip M
165169
(L := (innerβ‚— V)) continuous_fourierChar continuous_inner f.integrable g.integrable
166170

171+
@[deprecated (since := "2025-11-16")]
172+
alias integral_sesq_fourierIntegral_eq := integral_sesq_fourier_eq
173+
167174
/-- Plancherel's theorem for Schwartz functions.
168175
169176
Version where the multiplication is replaced by a general bilinear form `M`. -/
170177
theorem integral_sesq_fourier_fourier (f : 𝓒(V, E)) (g : 𝓒(V, F)) (M : E β†’L⋆[β„‚] F β†’L[β„‚] G) :
171178
∫ ΞΎ, M (𝓕 f ΞΎ) (𝓕 g ΞΎ) = ∫ x, M (f x) (g x) := by
172-
simpa using integral_sesq_fourierIntegral_eq f (𝓕 g) M
179+
simpa using integral_sesq_fourier_eq f (𝓕 g) M
173180

174181
end fubini
175182

β€ŽMathlib/Analysis/Fourier/FourierTransform.leanβ€Ž

Lines changed: 69 additions & 30 deletions
Original file line numberDiff line numberDiff line change
@@ -414,78 +414,117 @@ open scoped RealInnerProductSpace
414414

415415
variable [FiniteDimensional ℝ V]
416416

417-
instance FourierTransform : FourierTransform (V β†’ E) (V β†’ E) where
418-
fourierTransform f := VectorFourier.fourierIntegral 𝐞 volume (innerβ‚— V) f
417+
instance instFourierTransform : FourierTransform (V β†’ E) (V β†’ E) where
418+
fourier f := VectorFourier.fourierIntegral 𝐞 volume (innerβ‚— V) f
419419

420-
instance FourierTransformInv : FourierTransformInv (V β†’ E) (V β†’ E) where
421-
fourierTransformInv f w := VectorFourier.fourierIntegral 𝐞 volume (-innerβ‚— V) f w
420+
instance instFourierTransformInv : FourierTransformInv (V β†’ E) (V β†’ E) where
421+
fourierInv f w := VectorFourier.fourierIntegral 𝐞 volume (-innerβ‚— V) f w
422422

423423
@[deprecated (since := "2025-11-12")]
424-
alias fourierIntegral := FourierTransform.fourierTransform
424+
alias fourierIntegral := FourierTransform.fourier
425425

426426
@[deprecated (since := "2025-11-12")]
427-
alias fourierIntegralInv := FourierTransform.fourierTransformInv
427+
alias fourierIntegralInv := FourierTransform.fourierInv
428428

429-
lemma fourierIntegral_eq (f : V β†’ E) (w : V) :
429+
lemma fourier_eq (f : V β†’ E) (w : V) :
430430
𝓕 f w = ∫ v, 𝐞 (-βŸͺv, w⟫) β€’ f v := rfl
431431

432-
lemma fourierIntegral_eq' (f : V β†’ E) (w : V) :
432+
@[deprecated (since := "2025-11-16")]
433+
alias fourierIntegral_eq := fourier_eq
434+
435+
lemma fourier_eq' (f : V β†’ E) (w : V) :
433436
𝓕 f w = ∫ v, Complex.exp ((↑(-2 * Ο€ * βŸͺv, w⟫) * Complex.I)) β€’ f v := by
434-
simp_rw [fourierIntegral_eq, Circle.smul_def, Real.fourierChar_apply, mul_neg, neg_mul]
437+
simp_rw [fourier_eq, Circle.smul_def, Real.fourierChar_apply, mul_neg, neg_mul]
438+
439+
@[deprecated (since := "2025-11-16")]
440+
alias fourierIntegral_eq' := fourier_eq'
435441

436-
lemma fourierIntegralInv_eq (f : V β†’ E) (w : V) :
442+
lemma fourierInv_eq (f : V β†’ E) (w : V) :
437443
𝓕⁻ f w = ∫ v, 𝐞 βŸͺv, w⟫ β€’ f v := by
438-
simp [FourierTransformInv.fourierTransformInv, VectorFourier.fourierIntegral]
444+
simp [FourierTransformInv.fourierInv, VectorFourier.fourierIntegral]
439445

440-
lemma fourierIntegralInv_eq' (f : V β†’ E) (w : V) :
446+
@[deprecated (since := "2025-11-16")]
447+
alias fourierIntegralInv_eq := fourierInv_eq
448+
449+
lemma fourierInv_eq' (f : V β†’ E) (w : V) :
441450
𝓕⁻ f w = ∫ v, Complex.exp ((↑(2 * Ο€ * βŸͺv, w⟫) * Complex.I)) β€’ f v := by
442-
simp_rw [fourierIntegralInv_eq, Circle.smul_def, Real.fourierChar_apply]
451+
simp_rw [fourierInv_eq, Circle.smul_def, Real.fourierChar_apply]
452+
453+
@[deprecated (since := "2025-11-16")]
454+
alias fourierIntegralInv_eq' := fourierInv_eq'
443455

444-
lemma fourierIntegral_comp_linearIsometry (A : W ≃ₗᡒ[ℝ] V) (f : V β†’ E) (w : W) :
456+
lemma fourier_comp_linearIsometry (A : W ≃ₗᡒ[ℝ] V) (f : V β†’ E) (w : W) :
445457
𝓕 (f ∘ A) w = (𝓕 f) (A w) := by
446-
simp only [fourierIntegral_eq, ← A.inner_map_map, Function.comp_apply,
458+
simp only [fourier_eq, ← A.inner_map_map, Function.comp_apply,
447459
← MeasurePreserving.integral_comp A.measurePreserving A.toHomeomorph.measurableEmbedding]
448460

449-
lemma fourierIntegralInv_eq_fourierIntegral_neg (f : V β†’ E) (w : V) :
461+
@[deprecated (since := "2025-11-16")]
462+
alias fourierIntegral_comp_linearIsometry := fourier_comp_linearIsometry
463+
464+
lemma fourierInv_eq_fourier_neg (f : V β†’ E) (w : V) :
450465
𝓕⁻ f w = 𝓕 f (-w) := by
451-
simp [fourierIntegral_eq, fourierIntegralInv_eq]
466+
simp [fourier_eq, fourierInv_eq]
467+
468+
@[deprecated (since := "2025-11-16")]
469+
alias fourierIntegralInv_eq_fourierIntegral_neg := fourierInv_eq_fourier_neg
452470

453-
lemma fourierIntegralInv_eq_fourierIntegral_comp_neg (f : V β†’ E) :
471+
lemma fourierInv_eq_fourier_comp_neg (f : V β†’ E) :
454472
𝓕⁻ f = 𝓕 (fun x ↦ f (-x)) := by
455473
ext y
456-
rw [fourierIntegralInv_eq_fourierIntegral_neg]
474+
rw [fourierInv_eq_fourier_neg]
457475
change 𝓕 f (LinearIsometryEquiv.neg ℝ y) = 𝓕 (f ∘ LinearIsometryEquiv.neg ℝ) y
458-
exact (fourierIntegral_comp_linearIsometry _ _ _).symm
476+
exact (fourier_comp_linearIsometry _ _ _).symm
477+
478+
@[deprecated (since := "2025-11-16")]
479+
alias fourierIntegralInv_eq_fourierIntegral_comp_neg := fourierInv_eq_fourier_comp_neg
459480

460-
lemma fourierIntegralInv_comm (f : V β†’ E) :
481+
lemma fourierInv_comm (f : V β†’ E) :
461482
𝓕 (𝓕⁻ f) = 𝓕⁻ (𝓕 f) := by
462-
conv_rhs => rw [fourierIntegralInv_eq_fourierIntegral_comp_neg]
463-
simp_rw [← fourierIntegralInv_eq_fourierIntegral_neg]
483+
conv_rhs => rw [fourierInv_eq_fourier_comp_neg]
484+
simp_rw [← fourierInv_eq_fourier_neg]
464485

465-
lemma fourierIntegralInv_comp_linearIsometry (A : W ≃ₗᡒ[ℝ] V) (f : V β†’ E) (w : W) :
486+
@[deprecated (since := "2025-11-16")]
487+
alias fourierIntegralInv_comm := fourierInv_comm
488+
489+
lemma fourierInv_comp_linearIsometry (A : W ≃ₗᡒ[ℝ] V) (f : V β†’ E) (w : W) :
466490
𝓕⁻ (f ∘ A) w = (𝓕⁻ f) (A w) := by
467-
simp [fourierIntegralInv_eq_fourierIntegral_neg, fourierIntegral_comp_linearIsometry]
491+
simp [fourierInv_eq_fourier_neg, fourier_comp_linearIsometry]
492+
493+
@[deprecated (since := "2025-11-16")]
494+
alias fourierIntegralInv_comp_linearIsometry := fourierInv_comp_linearIsometry
468495

469-
theorem fourierIntegral_real_eq (f : ℝ β†’ E) (w : ℝ) :
496+
theorem fourier_real_eq (f : ℝ β†’ E) (w : ℝ) :
470497
𝓕 f w = ∫ v : ℝ, 𝐞 (-(v * w)) β€’ f v := by
471498
simp_rw [mul_comm _ w]
472499
rfl
473500

474-
theorem fourierIntegral_real_eq_integral_exp_smul (f : ℝ β†’ E) (w : ℝ) :
501+
@[deprecated (since := "2025-11-16")]
502+
alias fourierIntegral_real_eq := fourier_real_eq
503+
504+
theorem fourier_real_eq_integral_exp_smul (f : ℝ β†’ E) (w : ℝ) :
475505
𝓕 f w = ∫ v : ℝ, Complex.exp (↑(-2 * Ο€ * v * w) * Complex.I) β€’ f v := by
476-
simp_rw [fourierIntegral_real_eq, Circle.smul_def, Real.fourierChar_apply, mul_neg, neg_mul,
506+
simp_rw [fourier_real_eq, Circle.smul_def, Real.fourierChar_apply, mul_neg, neg_mul,
477507
mul_assoc]
478508

479-
theorem fourierIntegral_continuousLinearMap_apply
509+
@[deprecated (since := "2025-11-16")]
510+
alias fourierIntegral_real_eq_integral_exp_smul := fourier_real_eq_integral_exp_smul
511+
512+
theorem fourier_continuousLinearMap_apply
480513
{F : Type*} [NormedAddCommGroup F] [NormedSpace ℝ F]
481514
{f : V β†’ (F β†’L[ℝ] E)} {a : F} {v : V} (hf : Integrable f) :
482515
𝓕 f v a = 𝓕 (fun x ↦ f x a) v :=
483516
fourierIntegral_continuousLinearMap_apply' (L := innerSL ℝ) hf
484517

485-
theorem fourierIntegral_continuousMultilinearMap_apply {ΞΉ : Type*} [Fintype ΞΉ]
518+
@[deprecated (since := "2025-11-16")]
519+
alias fourierIntegral_continuousLinearMap_apply := fourier_continuousLinearMap_apply
520+
521+
theorem fourier_continuousMultilinearMap_apply {ΞΉ : Type*} [Fintype ΞΉ]
486522
{M : ΞΉ β†’ Type*} [βˆ€ i, NormedAddCommGroup (M i)] [βˆ€ i, NormedSpace ℝ (M i)]
487523
{f : V β†’ ContinuousMultilinearMap ℝ M E} {m : (i : ΞΉ) β†’ M i} {v : V} (hf : Integrable f) :
488524
𝓕 f v m = 𝓕 (fun x ↦ f x m) v :=
489525
fourierIntegral_continuousMultilinearMap_apply' (L := innerSL ℝ) hf
490526

527+
@[deprecated (since := "2025-11-16")]
528+
alias fourierIntegral_continuousMultilinearMap_apply := fourier_continuousMultilinearMap_apply
529+
491530
end Real

0 commit comments

Comments
Β (0)