|
| 1 | +/- |
| 2 | +Copyright (c) 2024 María Inés de Frutos-Fernández. All rights reserved. |
| 3 | +Released under Apache 2.0 license as described in the file LICENSE. |
| 4 | +Authors: María Inés de Frutos-Fernández |
| 5 | +-/ |
| 6 | +import Mathlib.Data.Real.NNReal |
| 7 | +import Mathlib.RingTheory.Valuation.Basic |
| 8 | + |
| 9 | +/-! |
| 10 | +# Rank one valuations |
| 11 | +
|
| 12 | +We define rank one valuations. |
| 13 | +
|
| 14 | +## Main Definitions |
| 15 | +* `RankOne` : A valuation `v` has rank one if it is nontrivial and its image is contained in `ℝ≥0`. |
| 16 | + Note that this class contains the data of the inclusion of the codomain of `v` into `ℝ≥0`. |
| 17 | +
|
| 18 | +## Tags |
| 19 | +
|
| 20 | +valuation, rank one |
| 21 | +-/ |
| 22 | + |
| 23 | +noncomputable section |
| 24 | + |
| 25 | +open Function Multiplicative |
| 26 | + |
| 27 | +open scoped NNReal |
| 28 | + |
| 29 | +variable {R : Type*} [Ring R] {Γ₀ : Type*} [LinearOrderedCommGroupWithZero Γ₀] |
| 30 | + |
| 31 | +namespace Valuation |
| 32 | + |
| 33 | +/-- A valuation has rank one if it is nontrivial and its image is contained in `ℝ≥0`. |
| 34 | + Note that this class includes the data of an inclusion morphism `Γ₀ → ℝ≥0`. -/ |
| 35 | +class RankOne (v : Valuation R Γ₀) where |
| 36 | + /-- The inclusion morphism from `Γ₀` to `ℝ≥0`. -/ |
| 37 | + hom : Γ₀ →*₀ ℝ≥0 |
| 38 | + strictMono' : StrictMono hom |
| 39 | + nontrivial' : ∃ r : R, v r ≠ 0 ∧ v r ≠ 1 |
| 40 | + |
| 41 | +namespace RankOne |
| 42 | + |
| 43 | +variable (v : Valuation R Γ₀) [RankOne v] |
| 44 | + |
| 45 | +lemma strictMono : StrictMono (hom v) := strictMono' |
| 46 | + |
| 47 | +lemma nontrivial : ∃ r : R, v r ≠ 0 ∧ v r ≠ 1 := nontrivial' |
| 48 | + |
| 49 | +/-- If `v` is a rank one valuation and `x : Γ₀` has image `0` under `RankOne.hom v`, then |
| 50 | + `x = 0`. -/ |
| 51 | +theorem zero_of_hom_zero {x : Γ₀} (hx : hom v x = 0) : x = 0 := by |
| 52 | + refine (eq_of_le_of_not_lt (zero_le' (a := x)) fun h_lt ↦ ?_).symm |
| 53 | + have hs := strictMono v h_lt |
| 54 | + rw [_root_.map_zero, hx] at hs |
| 55 | + exact hs.false |
| 56 | + |
| 57 | +/-- If `v` is a rank one valuation, then`x : Γ₀` has image `0` under `RankOne.hom v` if and |
| 58 | + only if `x = 0`. -/ |
| 59 | +theorem hom_eq_zero_iff {x : Γ₀} : RankOne.hom v x = 0 ↔ x = 0 := |
| 60 | + ⟨fun h ↦ zero_of_hom_zero v h, fun h ↦ by rw [h, _root_.map_zero]⟩ |
| 61 | + |
| 62 | +/-- A nontrivial unit of `Γ₀`, given that there exists a rank one `v : Valuation R Γ₀`. -/ |
| 63 | +def unit : Γ₀ˣ := |
| 64 | + Units.mk0 (v (nontrivial v).choose) ((nontrivial v).choose_spec).1 |
| 65 | + |
| 66 | +/-- A proof that `RankOne.unit v ≠ 1`. -/ |
| 67 | +theorem unit_ne_one : unit v ≠ 1 := by |
| 68 | + rw [Ne.def, ← Units.eq_iff, Units.val_one] |
| 69 | + exact ((nontrivial v).choose_spec ).2 |
| 70 | + |
| 71 | +end RankOne |
| 72 | + |
| 73 | +end Valuation |
0 commit comments