Skip to content

Commit c332153

Browse files
committed
feat: eigenvalues of AᴴA and AAᴴ are non-negative (#7312)
The PR provides two lemmas showing that the eigenvalues of $A\^HA$ and $AA^H$ are non-negative: - `eigenvalues_conjTranspose_mul_self_nonneg`: $$\text{eig}(A\^H A) \geq 0 $$ - `eigenvalues_self_mul_conjTranspose_nonneg`: $$\text{eig}(A A\^H) \geq 0 $$ This was suggested by @Vierkantor in PR #6042
1 parent d84c8d2 commit c332153

File tree

1 file changed

+8
-0
lines changed

1 file changed

+8
-0
lines changed

Mathlib/LinearAlgebra/Matrix/PosDef.lean

Lines changed: 8 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -130,6 +130,14 @@ lemma PosSemidef.eigenvalues_nonneg [DecidableEq n] {A : Matrix n n 𝕜}
130130
(hA : Matrix.PosSemidef A) (i : n) : 0 ≤ hA.1.eigenvalues i :=
131131
(hA.re_dotProduct_nonneg _).trans_eq (hA.1.eigenvalues_eq _).symm
132132

133+
lemma eigenvalues_conjTranspose_mul_self_nonneg (A : Matrix m n 𝕜) [DecidableEq n] (i : n) :
134+
0 ≤ (isHermitian_transpose_mul_self A).eigenvalues i :=
135+
(Matrix.posSemidef_conjTranspose_mul_self _).eigenvalues_nonneg _
136+
137+
lemma eigenvalues_self_mul_conjTranspose_nonneg (A : Matrix m n 𝕜) [DecidableEq m] (i : m) :
138+
0 ≤ (isHermitian_mul_conjTranspose_self A).eigenvalues i :=
139+
(Matrix.posSemidef_self_mul_conjTranspose _).eigenvalues_nonneg _
140+
133141
namespace PosDef
134142

135143
variable {M : Matrix n n ℝ} (hM : M.PosDef)

0 commit comments

Comments
 (0)