|
| 1 | +/- |
| 2 | +Copyright (c) 2020 Johan Commelin. All rights reserved. |
| 3 | +Released under Apache 2.0 license as described in the file LICENSE. |
| 4 | +Authors: Johan Commelin |
| 5 | +
|
| 6 | +! This file was ported from Lean 3 source module order.hom.set |
| 7 | +! leanprover-community/mathlib commit 198161d833f2c01498c39c266b0b3dbe2c7a8c07 |
| 8 | +! Please do not edit these lines, except to modify the commit id |
| 9 | +! if you have ported upstream changes. |
| 10 | +-/ |
| 11 | +import Mathlib.Order.Hom.Basic |
| 12 | +import Mathlib.Logic.Equiv.Set |
| 13 | +import Mathlib.Data.Set.Image |
| 14 | + |
| 15 | +/-! |
| 16 | +# Order homomorphisms and sets |
| 17 | +-/ |
| 18 | + |
| 19 | + |
| 20 | +open OrderDual |
| 21 | + |
| 22 | +variable {F α β γ δ : Type _} |
| 23 | + |
| 24 | +namespace OrderIso |
| 25 | + |
| 26 | +section LE |
| 27 | + |
| 28 | +variable [LE α] [LE β] [LE γ] |
| 29 | + |
| 30 | +theorem range_eq (e : α ≃o β) : Set.range e = Set.univ := |
| 31 | + e.surjective.range_eq |
| 32 | +#align order_iso.range_eq OrderIso.range_eq |
| 33 | + |
| 34 | +@[simp] |
| 35 | +theorem symm_image_image (e : α ≃o β) (s : Set α) : e.symm '' (e '' s) = s := |
| 36 | + e.toEquiv.symm_image_image s |
| 37 | +#align order_iso.symm_image_image OrderIso.symm_image_image |
| 38 | + |
| 39 | +@[simp] |
| 40 | +theorem image_symm_image (e : α ≃o β) (s : Set β) : e '' (e.symm '' s) = s := |
| 41 | + e.toEquiv.image_symm_image s |
| 42 | +#align order_iso.image_symm_image OrderIso.image_symm_image |
| 43 | + |
| 44 | +theorem image_eq_preimage (e : α ≃o β) (s : Set α) : e '' s = e.symm ⁻¹' s := |
| 45 | + e.toEquiv.image_eq_preimage s |
| 46 | +#align order_iso.image_eq_preimage OrderIso.image_eq_preimage |
| 47 | + |
| 48 | +@[simp] |
| 49 | +theorem preimage_symm_preimage (e : α ≃o β) (s : Set α) : e ⁻¹' (e.symm ⁻¹' s) = s := |
| 50 | + e.toEquiv.preimage_symm_preimage s |
| 51 | +#align order_iso.preimage_symm_preimage OrderIso.preimage_symm_preimage |
| 52 | + |
| 53 | +@[simp] |
| 54 | +theorem symm_preimage_preimage (e : α ≃o β) (s : Set β) : e.symm ⁻¹' (e ⁻¹' s) = s := |
| 55 | + e.toEquiv.symm_preimage_preimage s |
| 56 | +#align order_iso.symm_preimage_preimage OrderIso.symm_preimage_preimage |
| 57 | + |
| 58 | +@[simp] |
| 59 | +theorem image_preimage (e : α ≃o β) (s : Set β) : e '' (e ⁻¹' s) = s := |
| 60 | + e.toEquiv.image_preimage s |
| 61 | +#align order_iso.image_preimage OrderIso.image_preimage |
| 62 | + |
| 63 | +@[simp] |
| 64 | +theorem preimage_image (e : α ≃o β) (s : Set α) : e ⁻¹' (e '' s) = s := |
| 65 | + e.toEquiv.preimage_image s |
| 66 | +#align order_iso.preimage_image OrderIso.preimage_image |
| 67 | + |
| 68 | +end LE |
| 69 | + |
| 70 | +open Set |
| 71 | + |
| 72 | +variable [Preorder α] [Preorder β] [Preorder γ] |
| 73 | + |
| 74 | +/-- Order isomorphism between two equal sets. -/ |
| 75 | +def setCongr (s t : Set α) (h : s = t) : |
| 76 | + s ≃o t where |
| 77 | + toEquiv := Equiv.setCongr h |
| 78 | + map_rel_iff' := Iff.rfl |
| 79 | +#align order_iso.set_congr OrderIso.setCongr |
| 80 | + |
| 81 | +/-- Order isomorphism between `univ : set α` and `α`. -/ |
| 82 | +def Set.univ : (Set.univ : Set α) ≃o |
| 83 | + α where |
| 84 | + toEquiv := Equiv.Set.univ α |
| 85 | + map_rel_iff' := Iff.rfl |
| 86 | +#align order_iso.set.univ OrderIso.Set.univ |
| 87 | + |
| 88 | +end OrderIso |
| 89 | + |
| 90 | +/-- If a function `f` is strictly monotone on a set `s`, then it defines an order isomorphism |
| 91 | +between `s` and its image. -/ |
| 92 | +protected noncomputable def StrictMonoOn.orderIso {α β} [LinearOrder α] [Preorder β] (f : α → β) |
| 93 | + (s : Set α) (hf : StrictMonoOn f s) : |
| 94 | + s ≃o f '' s where |
| 95 | + toEquiv := hf.injOn.bijOn_image.equiv _ |
| 96 | + map_rel_iff' := hf.le_iff_le (Subtype.property _) (Subtype.property _) |
| 97 | +#align strict_mono_on.order_iso StrictMonoOn.orderIso |
| 98 | + |
| 99 | +namespace StrictMono |
| 100 | + |
| 101 | +variable [LinearOrder α] [Preorder β] |
| 102 | + |
| 103 | +variable (f : α → β) (h_mono : StrictMono f) (h_surj : Function.Surjective f) |
| 104 | + |
| 105 | +/-- A strictly monotone function from a linear order is an order isomorphism between its domain and |
| 106 | +its range. -/ |
| 107 | +@[simps apply] |
| 108 | +protected noncomputable def orderIso : |
| 109 | + α ≃o Set.range f where |
| 110 | + toEquiv := Equiv.ofInjective f h_mono.injective |
| 111 | + map_rel_iff' := h_mono.le_iff_le |
| 112 | +#align strict_mono.order_iso StrictMono.orderIso |
| 113 | + |
| 114 | +/-- A strictly monotone surjective function from a linear order is an order isomorphism. -/ |
| 115 | +noncomputable def orderIsoOfSurjective : α ≃o β := |
| 116 | + (h_mono.orderIso f).trans <| |
| 117 | + (OrderIso.setCongr _ _ h_surj.range_eq).trans OrderIso.Set.univ |
| 118 | +#align strict_mono.order_iso_of_surjective StrictMono.orderIsoOfSurjective |
| 119 | + |
| 120 | +@[simp] |
| 121 | +theorem coe_orderIsoOfSurjective : (orderIsoOfSurjective f h_mono h_surj : α → β) = f := |
| 122 | + rfl |
| 123 | +#align strict_mono.coe_order_iso_of_surjective StrictMono.coe_orderIsoOfSurjective |
| 124 | + |
| 125 | +@[simp] |
| 126 | +theorem orderIsoOfSurjective_symm_apply_self (a : α) : |
| 127 | + (orderIsoOfSurjective f h_mono h_surj).symm (f a) = a := |
| 128 | + (orderIsoOfSurjective f h_mono h_surj).symm_apply_apply _ |
| 129 | +#align strict_mono.order_iso_of_surjective_symm_apply_self |
| 130 | + StrictMono.orderIsoOfSurjective_symm_apply_self |
| 131 | + |
| 132 | +theorem orderIsoOfSurjective_self_symm_apply (b : β) : |
| 133 | + f ((orderIsoOfSurjective f h_mono h_surj).symm b) = b := |
| 134 | + (orderIsoOfSurjective f h_mono h_surj).apply_symm_apply _ |
| 135 | +#align strict_mono.order_iso_of_surjective_self_symm_apply |
| 136 | + StrictMono.orderIsoOfSurjective_self_symm_apply |
| 137 | + |
| 138 | +end StrictMono |
| 139 | + |
| 140 | +section BooleanAlgebra |
| 141 | + |
| 142 | +variable (α) [BooleanAlgebra α] |
| 143 | + |
| 144 | +/-- Taking complements as an order isomorphism to the order dual. -/ |
| 145 | +@[simps] |
| 146 | +def OrderIso.compl : α ≃o αᵒᵈ where |
| 147 | + toFun := OrderDual.toDual ∘ HasCompl.compl |
| 148 | + invFun := HasCompl.compl ∘ OrderDual.ofDual |
| 149 | + left_inv := compl_compl |
| 150 | + right_inv := compl_compl (α := αᵒᵈ) |
| 151 | + map_rel_iff' := compl_le_compl_iff_le |
| 152 | +#align order_iso.compl OrderIso.compl |
| 153 | + |
| 154 | +theorem compl_strictAnti : StrictAnti (compl : α → α) := |
| 155 | + (OrderIso.compl α).strictMono |
| 156 | +#align compl_strict_anti compl_strictAnti |
| 157 | + |
| 158 | +theorem compl_antitone : Antitone (compl : α → α) := |
| 159 | + (OrderIso.compl α).monotone |
| 160 | +#align compl_antitone compl_antitone |
| 161 | + |
| 162 | +end BooleanAlgebra |
0 commit comments