Skip to content

Commit cc27c32

Browse files
jjdisherealreadydonejcommelin
committed
feat(FieldTheory/AlgebraicClosure): A polynomial splits in E implies it splits in algebraicClosure F E (#18331)
Add a lemma saying a polynomial splits in `E` implies it splits in `algebraicClosure F E`. Co-authored-by: Junyan Xu <junyanxu.math@gmail.com> Co-authored-by: Junyan Xu <junyanxu.math@gmail.com> Co-authored-by: Jiang Jiedong <107380768+jjdishere@users.noreply.github.com> Co-authored-by: Johan Commelin <johan@commelin.net> Co-authored-by: Junyan Xu <junyanxumath@gmail.com>
1 parent d1e879a commit cc27c32

File tree

1 file changed

+9
-0
lines changed

1 file changed

+9
-0
lines changed

Mathlib/FieldTheory/AlgebraicClosure.lean

Lines changed: 9 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -200,3 +200,12 @@ theorem adjoin_le [Algebra E K] [IsScalarTower F E K] :
200200
adjoin_le_iff.2 <| le_restrictScalars F E K
201201

202202
end algebraicClosure
203+
204+
variable {F}
205+
/--
206+
Let `E / F` be a field extension. If a polynomial `p`
207+
splits in `E`, then it splits in the relative algebraic closure of `F` in `E` already.
208+
-/
209+
theorem Splits.algebraicClosure {p : F[X]} (h : p.Splits (algebraMap F E)) :
210+
p.Splits (algebraMap F (algebraicClosure F E)) :=
211+
splits_of_splits h fun _ hx ↦ (isAlgebraic_of_mem_rootSet hx).isIntegral

0 commit comments

Comments
 (0)