@@ -80,7 +80,7 @@ theorem induction_on_pi {p : (∀ i, Finset (α i)) → Prop} (f : ∀ i, Finset
8080
8181/-- Given a predicate on functions `∀ i, Finset (α i)` defined on a finite type, it is true on all
8282maps provided that it is true on `fun _ ↦ ∅` and for any function `g : ∀ i, Finset (α i)`, an index
83- `i : ι`, and an element`x : α i` that is strictly greater than all elements of `g i`, `p g` implies
83+ `i : ι`, and an element `x : α i` that is strictly greater than all elements of `g i`, `p g` implies
8484`p (update g i (insert x (g i)))`.
8585
8686This lemma requires `LinearOrder` instances on all `α i`. See also `Finset.induction_on_pi` for a
@@ -96,7 +96,7 @@ theorem induction_on_pi_max [∀ i, LinearOrder (α i)] {p : (∀ i, Finset (α
9696
9797/-- Given a predicate on functions `∀ i, Finset (α i)` defined on a finite type, it is true on all
9898maps provided that it is true on `fun _ ↦ ∅` and for any function `g : ∀ i, Finset (α i)`, an index
99- `i : ι`, and an element`x : α i` that is strictly less than all elements of `g i`, `p g` implies
99+ `i : ι`, and an element `x : α i` that is strictly less than all elements of `g i`, `p g` implies
100100`p (update g i (insert x (g i)))`.
101101
102102This lemma requires `LinearOrder` instances on all `α i`. See also `Finset.induction_on_pi` for a
0 commit comments