Skip to content

Commit cf85478

Browse files
committed
doc: add missing spacing around doc code blocks (#31905)
Issues found and fixed with help from Codex.
1 parent 4c34f6c commit cf85478

File tree

18 files changed

+24
-24
lines changed

18 files changed

+24
-24
lines changed

Mathlib/AlgebraicTopology/SimplicialSet/StdSimplex.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -14,7 +14,7 @@ public import Mathlib.Order.Fin.SuccAboveOrderIso
1414
1515
We define the standard simplices `Δ[n]` as simplicial sets.
1616
See files `SimplicialSet.Boundary` and `SimplicialSet.Horn`
17-
for their boundaries`∂Δ[n]` and horns `Λ[n, i]`.
17+
for their boundaries `∂Δ[n]` and horns `Λ[n, i]`.
1818
(The notations are available via `open Simplicial`.)
1919
2020
-/

Mathlib/Analysis/Meromorphic/Divisor.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -92,7 +92,7 @@ theorem divisor_congr_codiscreteWithin_of_eqOn_compl {f₁ f₂ : 𝕜 → E} (h
9292

9393
/--
9494
If `f₁` is meromorphic on an open set `U`, if `f₂` agrees with `f₁` on a codiscrete subset of `U`,
95-
then `f₁` and `f₂` induce the same divisors on`U`.
95+
then `f₁` and `f₂` induce the same divisors on `U`.
9696
-/
9797
theorem divisor_congr_codiscreteWithin {f₁ f₂ : 𝕜 → E} (hf₁ : MeromorphicOn f₁ U)
9898
(h₁ : f₁ =ᶠ[Filter.codiscreteWithin U] f₂) (h₂ : IsOpen U) :

Mathlib/CategoryTheory/Adjunction/Mates.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -27,7 +27,7 @@ where `L₁ ⊣ R₁` and `L₂ ⊣ R₂`. The corresponding natural transformat
2727
2828
This bijection includes a number of interesting cases as specializations. For instance, in the
2929
special case where `G,H` are identity functors then the bijection preserves and reflects
30-
isomorphisms (i.e. we have bijections`(L₂ ⟶ L₁) ≃ (R₁ ⟶ R₂)`, and if either side is an iso then the
30+
isomorphisms (i.e. we have bijections `(L₂ ⟶ L₁) ≃ (R₁ ⟶ R₂)`, and if either side is an iso then the
3131
other side is as well). This demonstrates that adjoints to a given functor are unique up to
3232
isomorphism (since if `L₁ ≅ L₂` then we deduce `R₁ ≅ R₂`).
3333

Mathlib/CategoryTheory/Limits/Preserves/Shapes/Square.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -14,7 +14,7 @@ public import Mathlib.CategoryTheory.Limits.Preserves.Ulift
1414
1515
If a functor `F : C ⥤ D` preserves suitable cospans (resp. spans),
1616
and `sq : Square C` is a pullback square (resp. a pushout square)
17-
then so is the square`sq.map F`.
17+
then so is the square `sq.map F`.
1818
1919
The lemma `Square.isPullback_iff_map_coyoneda_isPullback` also
2020
shows that a square is a pullback square iff it is so after the

Mathlib/CategoryTheory/Limits/Presheaf.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -235,7 +235,7 @@ end
235235

236236
/-- Given `P : Cᵒᵖ ⥤ Type max w v₁`, this is the functor from the opposite category
237237
of the category of elements of `X` which sends an element in `P.obj (op X)` to the
238-
presheaf represented by `X`. The definition`coconeOfRepresentable`
238+
presheaf represented by `X`. The definition `coconeOfRepresentable`
239239
gives a cocone for this functor which is a colimit and has point `P`.
240240
-/
241241
@[simps! obj map]

Mathlib/CategoryTheory/Monoidal/Action/Opposites.lean

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -14,9 +14,9 @@ public import Mathlib.CategoryTheory.Monoidal.Opposite
1414
1515
In this file, given a monoidal category `C` and a category `D`,
1616
we construct a left `C`-action on `D` out of the data of a right `Cᴹᵒᵖ`-action
17-
on `D`. We also construct a right `C`-action on `D`from the data of a left
17+
on `D`. We also construct a right `C`-action on `D` from the data of a left
1818
`Cᴹᵒᵖ`-action on `D`. Conversely, given left/right `C`-actions on `D`,
19-
we construct a`Cᴹᵒᵖ` actions with the conjugate variance.
19+
we construct a `Cᴹᵒᵖ` action with the conjugate variance.
2020
2121
We construct similar actions for `Cᵒᵖ`, namely, left/right `Cᵒᵖ`-actions
2222
on `Dᵒᵖ` from left/right-actions of `C` on `D`, and vice-versa.

Mathlib/Data/Finset/Erase.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -70,7 +70,7 @@ theorem mem_of_mem_erase : b ∈ erase s a → b ∈ s :=
7070
theorem mem_erase_of_ne_of_mem : a ≠ b → a ∈ s → a ∈ erase s b := by
7171
simp only [mem_erase]; exact And.intro
7272

73-
/-- An element of `s` that is not an element of `erase s a` must be`a`. -/
73+
/-- An element of `s` that is not an element of `erase s a` must be `a`. -/
7474
theorem eq_of_mem_of_notMem_erase (hs : b ∈ s) (hsa : b ∉ s.erase a) : b = a := by grind
7575

7676
@[deprecated (since := "2025-05-23")] alias eq_of_mem_of_not_mem_erase := eq_of_mem_of_notMem_erase

Mathlib/Data/Finset/PiInduction.lean

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -80,7 +80,7 @@ theorem induction_on_pi {p : (∀ i, Finset (α i)) → Prop} (f : ∀ i, Finset
8080

8181
/-- Given a predicate on functions `∀ i, Finset (α i)` defined on a finite type, it is true on all
8282
maps provided that it is true on `fun _ ↦ ∅` and for any function `g : ∀ i, Finset (α i)`, an index
83-
`i : ι`, and an element`x : α i` that is strictly greater than all elements of `g i`, `p g` implies
83+
`i : ι`, and an element `x : α i` that is strictly greater than all elements of `g i`, `p g` implies
8484
`p (update g i (insert x (g i)))`.
8585
8686
This lemma requires `LinearOrder` instances on all `α i`. See also `Finset.induction_on_pi` for a
@@ -96,7 +96,7 @@ theorem induction_on_pi_max [∀ i, LinearOrder (α i)] {p : (∀ i, Finset (α
9696

9797
/-- Given a predicate on functions `∀ i, Finset (α i)` defined on a finite type, it is true on all
9898
maps provided that it is true on `fun _ ↦ ∅` and for any function `g : ∀ i, Finset (α i)`, an index
99-
`i : ι`, and an element`x : α i` that is strictly less than all elements of `g i`, `p g` implies
99+
`i : ι`, and an element `x : α i` that is strictly less than all elements of `g i`, `p g` implies
100100
`p (update g i (insert x (g i)))`.
101101
102102
This lemma requires `LinearOrder` instances on all `α i`. See also `Finset.induction_on_pi` for a

Mathlib/LinearAlgebra/Lagrange.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -24,7 +24,7 @@ public import Mathlib.RingTheory.Polynomial.Basic
2424
and `0` at `v j` for `i ≠ j`.
2525
* `Lagrange.interpolate v r` where `r : ι → F` is a function from the fintype to the field: the
2626
Lagrange interpolant that evaluates to `r i` at `x i` for all `i : ι`. The `r i` are the _values_
27-
associated with the _nodes_`x i`.
27+
associated with the _nodes_ `x i`.
2828
-/
2929

3030
@[expose] public section

Mathlib/LinearAlgebra/Matrix/ToLin.lean

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1112,7 +1112,7 @@ variable (M : Type*) [AddCommMonoid M] [Module R M] [Module A M] [IsScalarTower
11121112

11131113
/--
11141114
Let `M` be an `A`-module. Every `A`-linear map `Mⁿ → Mⁿ` corresponds to a `n×n`-matrix whose entries
1115-
are `A`-linear maps `M → M`. In another word, we have`End(Mⁿ) ≅ Matₙₓₙ(End(M))` defined by:
1115+
are `A`-linear maps `M → M`. In another word, we have `End(Mⁿ) ≅ Matₙₓₙ(End(M))` defined by:
11161116
`(f : Mⁿ → Mⁿ) ↦ (x ↦ f (0, ..., x at j-th position, ..., 0) i)ᵢⱼ` and
11171117
`m : Matₙₓₙ(End(M)) ↦ (v ↦ ∑ⱼ mᵢⱼ(vⱼ))`.
11181118
@@ -1145,7 +1145,7 @@ def endVecRingEquivMatrixEnd :
11451145

11461146
/--
11471147
Let `M` be an `A`-module. Every `A`-linear map `Mⁿ → Mⁿ` corresponds to a `n×n`-matrix whose entries
1148-
are `R`-linear maps `M → M`. In another word, we have`End(Mⁿ) ≅ Matₙₓₙ(End(M))` defined by:
1148+
are `R`-linear maps `M → M`. In another word, we have `End(Mⁿ) ≅ Matₙₓₙ(End(M))` defined by:
11491149
`(f : Mⁿ → Mⁿ) ↦ (x ↦ f (0, ..., x at j-th position, ..., 0) i)ᵢⱼ` and
11501150
`m : Matₙₓₙ(End(M)) ↦ (v ↦ ∑ⱼ mᵢⱼ(vⱼ))`.
11511151

0 commit comments

Comments
 (0)