@@ -55,7 +55,7 @@ namespace MeromorphicAt
5555@[fun_prop]
5656lemma id (x : π) : MeromorphicAt id x := analyticAt_id.meromorphicAt
5757
58- @[fun_prop]
58+ @[fun_prop, simp ]
5959lemma const (e : E) (x : π) : MeromorphicAt (fun _ β¦ e) x :=
6060 analyticAt_const.meromorphicAt
6161
@@ -109,7 +109,7 @@ lemma fun_mul {f g : π β π} {x : π} (hf : MeromorphicAt f x) (hg : Me
109109
110110@[deprecated (since := "2025-05-09")] alias mul' := fun_mul
111111
112- /-- Finite products of meromorphic functions are analytic . -/
112+ /-- Finite products of meromorphic functions are meromorphic . -/
113113@[fun_prop]
114114theorem prod {ΞΉ : Type *} {s : Finset ΞΉ} {f : ΞΉ β π β π} {x : π}
115115 (h : β Ο, MeromorphicAt (f Ο) x) :
@@ -123,14 +123,35 @@ theorem prod {ΞΉ : Type*} {s : Finset ΞΉ} {f : ΞΉ β π β π} {x : π}
123123 rw [Finset.prod_insert hΟ]
124124 exact (h Ο).mul hind
125125
126- /-- Finite products of meromorphic functions are analytic . -/
126+ /-- Finite products of meromorphic functions are meromorphic . -/
127127@[fun_prop]
128128theorem fun_prod {ΞΉ : Type *} {s : Finset ΞΉ} {f : ΞΉ β π β π} {x : π}
129129 (h : β Ο, MeromorphicAt (f Ο) x) :
130130 MeromorphicAt (fun z β¦ β n β s, f n z) x := by
131131 convert prod h (s := s)
132132 simp
133133
134+ /-- Finite sums of meromorphic functions are meromorphic. -/
135+ @[fun_prop]
136+ theorem sum {ΞΉ : Type *} {s : Finset ΞΉ} {f : ΞΉ β π β E} {x : π} (h : β Ο, MeromorphicAt (f Ο) x) :
137+ MeromorphicAt (β n β s, f n) x := by
138+ classical
139+ induction s using Finset.induction with
140+ | empty =>
141+ simp only [Finset.sum_empty]
142+ exact analyticAt_const.meromorphicAt
143+ | insert Ο s hΟ hind =>
144+ rw [Finset.sum_insert hΟ]
145+ exact (h Ο).add hind
146+
147+ /-- Finite sums of meromorphic functions are meromorphic. -/
148+ @[fun_prop]
149+ theorem fun_sum {ΞΉ : Type *} {s : Finset ΞΉ} {f : ΞΉ β π β E} {x : π}
150+ (h : β Ο, MeromorphicAt (f Ο) x) :
151+ MeromorphicAt (fun z β¦ β n β s, f n z) x := by
152+ convert sum h (s := s)
153+ simp
154+
134155@[fun_prop]
135156lemma neg {f : π β E} {x : π} (hf : MeromorphicAt f x) : MeromorphicAt (-f) x := by
136157 convert (MeromorphicAt.const (-1 : π) x).smul hf using 1
@@ -401,18 +422,29 @@ lemma mul : MeromorphicOn (s * t) U := fun x hx β¦ (hs x hx).mul (ht x hx)
401422include hs ht in
402423lemma fun_mul : MeromorphicOn (fun z β¦ s z * t z) U := fun x hx β¦ (hs x hx).mul (ht x hx)
403424
404- /-- Finite products of meromorphic functions are analytic . -/
425+ /-- Finite products of meromorphic functions are meromorphic . -/
405426lemma prod {U : Set π} {ΞΉ : Type *} {s : Finset ΞΉ} {f : ΞΉ β π β π}
406427 (h : β Ο, MeromorphicOn (f Ο) U) :
407428 MeromorphicOn (β n β s, f n) U :=
408429 fun z hz β¦ MeromorphicAt.prod (fun Ο β¦ h Ο z hz)
409430
410- /-- Finite products of meromorphic functions are analytic . -/
431+ /-- Finite products of meromorphic functions are meromorphic . -/
411432lemma fun_prod {U : Set π} {ΞΉ : Type *} {s : Finset ΞΉ} {f : ΞΉ β π β π}
412433 (h : β Ο, MeromorphicOn (f Ο) U) :
413434 MeromorphicOn (fun z β¦ β n β s, f n z) U :=
414435 fun z hz β¦ MeromorphicAt.fun_prod (fun Ο β¦ h Ο z hz)
415436
437+ /-- Finite sums of meromorphic functions are meromorphic. -/
438+ lemma sum {U : Set π} {ΞΉ : Type *} {s : Finset ΞΉ} {f : ΞΉ β π β E} (h : β Ο, MeromorphicOn (f Ο) U) :
439+ MeromorphicOn (β n β s, f n) U :=
440+ fun z hz β¦ MeromorphicAt.sum (fun Ο β¦ h Ο z hz)
441+
442+ /-- Finite sums of meromorphic functions are meromorphic. -/
443+ lemma fun_sum {U : Set π} {ΞΉ : Type *} {s : Finset ΞΉ} {f : ΞΉ β π β E}
444+ (h : β Ο, MeromorphicOn (f Ο) U) :
445+ MeromorphicOn (fun z β¦ β n β s, f n z) U :=
446+ fun z hz β¦ MeromorphicAt.fun_sum (fun Ο β¦ h Ο z hz)
447+
416448include hs in
417449lemma inv : MeromorphicOn sβ»ΒΉ U := fun x hx β¦ (hs x hx).inv
418450
0 commit comments