@@ -1058,45 +1058,41 @@ open Opposite
10581058
10591059variable (X : T)
10601060
1061- /-- The canonical functor by reversing structure arrows. -/
1061+ /-- The canonical equivalence between over and under categories by reversing structure arrows. -/
10621062@[simps]
1063- def Over.opToOpUnder : Over (op X) ⥤ (Under X)ᵒᵖ where
1064- obj Y := ⟨Under.mk Y.hom.unop⟩
1065- map {Z Y} f := ⟨Under.homMk (f.left.unop) (by dsimp; rw [← unop_comp, Over.w])⟩
1066-
1067- /-- The canonical functor by reversing structure arrows. -/
1068- @[simps]
1069- def Under.opToOverOp : (Under X)ᵒᵖ ⥤ Over (op X) where
1070- obj Y := Over.mk (Y.unop.hom.op)
1071- map {Z Y} f := Over.homMk f.unop.right.op <| by dsimp; rw [← Under.w f.unop, op_comp]
1063+ def Over.opEquivOpUnder : Over (op X) ≌ (Under X)ᵒᵖ where
1064+ functor.obj Y := ⟨Under.mk Y.hom.unop⟩
1065+ functor.map {Z Y} f := ⟨Under.homMk (f.left.unop) (by dsimp; rw [← unop_comp, Over.w])⟩
1066+ inverse.obj Y := Over.mk (Y.unop.hom.op)
1067+ inverse.map {Z Y} f := Over.homMk f.unop.right.op <| by dsimp; rw [← Under.w f.unop, op_comp]
1068+ unitIso := Iso.refl _
1069+ counitIso := Iso.refl _
10721070
1073- /-- `Over.opToOpUnder` is an equivalence of categories. -/
1071+ /-- The canonical equivalence between under and over categories by reversing structure arrows . -/
10741072@[simps]
1075- def Over.opEquivOpUnder : Over (op X) ≌ (Under X)ᵒᵖ where
1076- functor := Over.opToOpUnder X
1077- inverse := Under.opToOverOp X
1073+ def Under.opEquivOpOver : Under (op X) ≌ (Over X)ᵒᵖ where
1074+ functor.obj Y := ⟨Over.mk Y.hom.unop⟩
1075+ functor.map {Z Y} f := ⟨Over.homMk (f.right.unop) (by dsimp; rw [← unop_comp, Under.w])⟩
1076+ inverse.obj Y := Under.mk (Y.unop.hom.op)
1077+ inverse.map {Z Y} f := Under.homMk f.unop.left.op <| by dsimp; rw [← Over.w f.unop, op_comp]
10781078 unitIso := Iso.refl _
10791079 counitIso := Iso.refl _
10801080
10811081/-- The canonical functor by reversing structure arrows. -/
1082- @[simps]
1083- def Under.opToOpOver : Under (op X) ⥤ (Over X)ᵒᵖ where
1084- obj Y := ⟨Over.mk Y.hom.unop⟩
1085- map {Z Y} f := ⟨Over.homMk (f.right.unop) (by dsimp; rw [← unop_comp, Under.w])⟩
1082+ @[deprecated Over.opEquivOpUnder (since := "2025-04-08")]
1083+ def Over.opToOpUnder : Over (op X) ⥤ (Under X)ᵒᵖ := (Over.opEquivOpUnder X).functor
10861084
10871085/-- The canonical functor by reversing structure arrows. -/
1088- @[simps]
1089- def Over.opToUnderOp : (Over X)ᵒᵖ ⥤ Under (op X) where
1090- obj Y := Under.mk (Y.unop.hom.op)
1091- map {Z Y} f := Under.homMk f.unop.left.op <| by dsimp; rw [← Over.w f.unop, op_comp]
1086+ @[deprecated Over.opEquivOpUnder (since := "2025-04-08")]
1087+ def Under.opToOverOp : (Under X)ᵒᵖ ⥤ Over (op X) := (Over.opEquivOpUnder X).inverse
10921088
1093- /-- `Under.opToOpOver` is an equivalence of categories . -/
1094- @[simps ]
1095- def Under.opEquivOpOver : Under (op X) ≌ (Over X)ᵒᵖ where
1096- functor := Under.opToOpOver X
1097- inverse := Over.opToUnderOp X
1098- unitIso := Iso.refl _
1099- counitIso := Iso.refl _
1089+ /-- The canonical functor by reversing structure arrows . -/
1090+ @[deprecated Under.opEquivOpOver (since := "2025-04-08") ]
1091+ def Under.opToOpOver : Under (op X) ⥤ (Over X)ᵒᵖ := (Under.opEquivOpOver X).functor
1092+
1093+ /-- The canonical functor by reversing structure arrows. -/
1094+ @[deprecated Under.opEquivOpOver (since := "2025-04-08")]
1095+ def Over.opToUnderOp : (Over X)ᵒᵖ ⥤ Under (op X) := (Under.opEquivOpOver X).inverse
11001096
11011097end Opposite
11021098
0 commit comments