Skip to content

Commit e3c93ad

Browse files
committed
refactor: don't expose the functor (Over X)ᵒᵖ ⥤ Under (op X) (#23839)
Instead only expose the equivalence. From Toric
1 parent 8466b91 commit e3c93ad

File tree

1 file changed

+25
-29
lines changed

1 file changed

+25
-29
lines changed

Mathlib/CategoryTheory/Comma/Over/Basic.lean

Lines changed: 25 additions & 29 deletions
Original file line numberDiff line numberDiff line change
@@ -1058,45 +1058,41 @@ open Opposite
10581058

10591059
variable (X : T)
10601060

1061-
/-- The canonical functor by reversing structure arrows. -/
1061+
/-- The canonical equivalence between over and under categories by reversing structure arrows. -/
10621062
@[simps]
1063-
def Over.opToOpUnder : Over (op X) ⥤ (Under X)ᵒᵖ where
1064-
obj Y := ⟨Under.mk Y.hom.unop⟩
1065-
map {Z Y} f := ⟨Under.homMk (f.left.unop) (by dsimp; rw [← unop_comp, Over.w])⟩
1066-
1067-
/-- The canonical functor by reversing structure arrows. -/
1068-
@[simps]
1069-
def Under.opToOverOp : (Under X)ᵒᵖ ⥤ Over (op X) where
1070-
obj Y := Over.mk (Y.unop.hom.op)
1071-
map {Z Y} f := Over.homMk f.unop.right.op <| by dsimp; rw [← Under.w f.unop, op_comp]
1063+
def Over.opEquivOpUnder : Over (op X) ≌ (Under X)ᵒᵖ where
1064+
functor.obj Y := ⟨Under.mk Y.hom.unop⟩
1065+
functor.map {Z Y} f := ⟨Under.homMk (f.left.unop) (by dsimp; rw [← unop_comp, Over.w])⟩
1066+
inverse.obj Y := Over.mk (Y.unop.hom.op)
1067+
inverse.map {Z Y} f := Over.homMk f.unop.right.op <| by dsimp; rw [← Under.w f.unop, op_comp]
1068+
unitIso := Iso.refl _
1069+
counitIso := Iso.refl _
10721070

1073-
/-- `Over.opToOpUnder` is an equivalence of categories. -/
1071+
/-- The canonical equivalence between under and over categories by reversing structure arrows. -/
10741072
@[simps]
1075-
def Over.opEquivOpUnder : Over (op X) ≌ (Under X)ᵒᵖ where
1076-
functor := Over.opToOpUnder X
1077-
inverse := Under.opToOverOp X
1073+
def Under.opEquivOpOver : Under (op X) ≌ (Over X)ᵒᵖ where
1074+
functor.obj Y := ⟨Over.mk Y.hom.unop⟩
1075+
functor.map {Z Y} f := ⟨Over.homMk (f.right.unop) (by dsimp; rw [← unop_comp, Under.w])⟩
1076+
inverse.obj Y := Under.mk (Y.unop.hom.op)
1077+
inverse.map {Z Y} f := Under.homMk f.unop.left.op <| by dsimp; rw [← Over.w f.unop, op_comp]
10781078
unitIso := Iso.refl _
10791079
counitIso := Iso.refl _
10801080

10811081
/-- The canonical functor by reversing structure arrows. -/
1082-
@[simps]
1083-
def Under.opToOpOver : Under (op X) ⥤ (Over X)ᵒᵖ where
1084-
obj Y := ⟨Over.mk Y.hom.unop⟩
1085-
map {Z Y} f := ⟨Over.homMk (f.right.unop) (by dsimp; rw [← unop_comp, Under.w])⟩
1082+
@[deprecated Over.opEquivOpUnder (since := "2025-04-08")]
1083+
def Over.opToOpUnder : Over (op X) ⥤ (Under X)ᵒᵖ := (Over.opEquivOpUnder X).functor
10861084

10871085
/-- The canonical functor by reversing structure arrows. -/
1088-
@[simps]
1089-
def Over.opToUnderOp : (Over X)ᵒᵖ ⥤ Under (op X) where
1090-
obj Y := Under.mk (Y.unop.hom.op)
1091-
map {Z Y} f := Under.homMk f.unop.left.op <| by dsimp; rw [← Over.w f.unop, op_comp]
1086+
@[deprecated Over.opEquivOpUnder (since := "2025-04-08")]
1087+
def Under.opToOverOp : (Under X)ᵒᵖ ⥤ Over (op X) := (Over.opEquivOpUnder X).inverse
10921088

1093-
/-- `Under.opToOpOver` is an equivalence of categories. -/
1094-
@[simps]
1095-
def Under.opEquivOpOver : Under (op X) (Over X)ᵒᵖ where
1096-
functor := Under.opToOpOver X
1097-
inverse := Over.opToUnderOp X
1098-
unitIso := Iso.refl _
1099-
counitIso := Iso.refl _
1089+
/-- The canonical functor by reversing structure arrows. -/
1090+
@[deprecated Under.opEquivOpOver (since := "2025-04-08")]
1091+
def Under.opToOpOver : Under (op X) (Over X)ᵒᵖ := (Under.opEquivOpOver X).functor
1092+
1093+
/-- The canonical functor by reversing structure arrows. -/
1094+
@[deprecated Under.opEquivOpOver (since := "2025-04-08")]
1095+
def Over.opToUnderOp : (Over X)ᵒᵖ ⥤ Under (op X) := (Under.opEquivOpOver X).inverse
11001096

11011097
end Opposite
11021098

0 commit comments

Comments
 (0)