@@ -137,9 +137,9 @@ theorem toFun_eq_coe {f : 𝓓^{n}_{K}(E, F)} : f.toFun = (f : E → F) :=
137137 rfl
138138
139139/-- See note [custom simps projection]. -/
140- def Simps.apply (f : 𝓓^{n}_{K}(E, F)) : E → F := f
140+ def Simps.coe (f : 𝓓^{n}_{K}(E, F)) : E → F := f
141141
142- initialize_simps_projections ContDiffMapSupportedIn (toFun → apply )
142+ initialize_simps_projections ContDiffMapSupportedIn (toFun → coe, as_prefix coe )
143143
144144@[ext]
145145theorem ext {f g : 𝓓^{n}_{K}(E, F)} (h : ∀ a, f a = g a) : f = g :=
@@ -165,53 +165,35 @@ theorem toBoundedContinuousFunction_apply (f : 𝓓^{n}_{K}(E, F)) (x : E) :
165165
166166section AddCommGroup
167167
168+ @[simps -fullyApplied]
168169instance : Zero 𝓓^{n}_{K}(E, F) where
169170 zero := .mk 0 contDiff_zero_fun fun _ _ ↦ rfl
170171
171- @[simp]
172- lemma coe_zero : (0 : 𝓓^{n}_{K}(E, F)) = (0 : E → F) :=
173- rfl
174-
172+ @[simps -fullyApplied]
175173instance : Add 𝓓^{n}_{K}(E, F) where
176174 add f g := .mk (f + g) (f.contDiff.add g.contDiff) <| by
177175 rw [← add_zero 0 ]
178176 exact f.zero_on_compl.comp_left₂ g.zero_on_compl
179177
180- -- TODO: can this lemma be auto-generated, e.g. using `simps`?
181- -- Investigate the same question for `zero` above and `sub` , `neg` and `smul` below.
182- @[simp]
183- lemma coe_add (f g : 𝓓^{n}_{K}(E, F)) : (f + g : 𝓓^{n}_{K}(E, F)) = (f : E → F) + g :=
184- rfl
185-
178+ @[simps -fullyApplied]
186179instance : Neg 𝓓^{n}_{K}(E, F) where
187180 neg f := .mk (-f) (f.contDiff.neg) <| by
188181 rw [← neg_zero]
189182 exact f.zero_on_compl.comp_left
190183
191- @[simp]
192- lemma coe_neg (f : 𝓓^{n}_{K}(E, F)) : (-f : 𝓓^{n}_{K}(E, F)) = (-f : E → F) :=
193- rfl
194-
184+ @[simps -fullyApplied]
195185instance instSub : Sub 𝓓^{n}_{K}(E, F) where
196186 sub f g := .mk (f - g) (f.contDiff.sub g.contDiff) <| by
197187 rw [← sub_zero 0 ]
198188 exact f.zero_on_compl.comp_left₂ g.zero_on_compl
199189
200- @[simp]
201- lemma coe_sub (f g : 𝓓^{n}_{K}(E, F)) : (f - g : 𝓓^{n}_{K}(E, F)) = (f : E → F) - g :=
202- rfl
203-
190+ @[simps -fullyApplied]
204191instance instSMul {R} [Semiring R] [Module R F] [SMulCommClass ℝ R F] [ContinuousConstSMul R F] :
205192 SMul R 𝓓^{n}_{K}(E, F) where
206193 smul c f := .mk (c • (f : E → F)) (f.contDiff.const_smul c) <| by
207194 rw [← smul_zero c]
208195 exact f.zero_on_compl.comp_left
209196
210- @[simp]
211- lemma coe_smul {R} [Semiring R] [Module R F] [SMulCommClass ℝ R F] [ContinuousConstSMul R F]
212- (c : R) (f : 𝓓^{n}_{K}(E, F)) : (c • f : 𝓓^{n}_{K}(E, F)) = c • (f : E → F) :=
213- rfl
214-
215197instance : AddCommGroup 𝓓^{n}_{K}(E, F) :=
216198 DFunLike.coe_injective.addCommGroup _ rfl (fun _ _ ↦ rfl) (fun _ ↦ rfl) (fun _ _ ↦ rfl)
217199 (fun _ _ ↦ rfl) fun _ _ ↦ rfl
0 commit comments