@@ -31,7 +31,7 @@ variable
3131/-- The Fourier transform on a real inner product space, as a continuous linear map on the
3232Schwartz space. -/
3333noncomputable def fourierTransformCLM : 𝓢(V, E) →L[𝕜] 𝓢(V, E) := by
34- refine mkCLM (𝓕 ·) ?_ ?_ ?_ ?_
34+ refine mkCLM ((𝓕 : (V → E) → (V → E)) ·) ?_ ?_ ?_ ?_
3535 · intro f g x
3636 simp only [fourierIntegral_eq, add_apply, smul_add]
3737 rw [integral_add]
@@ -78,17 +78,17 @@ noncomputable def fourierTransformCLM : 𝓢(V, E) →L[𝕜] 𝓢(V, E) := by
7878 _ = _ := by simp [mul_assoc]
7979
8080@[simp] lemma fourierTransformCLM_apply (f : 𝓢(V, E)) :
81- fourierTransformCLM 𝕜 f = 𝓕 f := rfl
81+ fourierTransformCLM 𝕜 f = 𝓕 (f : V → E) := rfl
8282
8383variable [CompleteSpace E]
8484
8585@[simp]
86- theorem fourier_inversion (f : 𝓢(V, E)) (x : V) : 𝓕⁻ (𝓕 f ) x = f x :=
86+ theorem fourier_inversion (f : 𝓢(V, E)) (x : V) : 𝓕⁻ (𝓕 (f : V → E) ) x = f x :=
8787 Integrable.fourier_inversion f.integrable (fourierTransformCLM ℂ f).integrable
8888 f.continuous.continuousAt
8989
9090@[simp]
91- theorem fourier_inversion_inv (f : 𝓢(V, E)) (x : V) : 𝓕 (𝓕⁻ f ) x = f x :=
91+ theorem fourier_inversion_inv (f : 𝓢(V, E)) (x : V) : 𝓕 (𝓕⁻ (f : V → E) ) x = f x :=
9292 Integrable.fourier_inversion_inv f.integrable (fourierTransformCLM ℂ f).integrable
9393 f.continuous.continuousAt
9494
@@ -101,13 +101,13 @@ variable [CompleteSpace F]
101101/-- The Fourier transform satisfies `∫ 𝓕 f * g = ∫ f * 𝓕 g`, i.e., it is self-adjoint.
102102Version where the multiplication is replaced by a general bilinear form `M`. -/
103103theorem integral_bilin_fourierIntegral_eq (f : 𝓢(V, E)) (g : 𝓢(V, F)) (M : E →L[ℂ] F →L[ℂ] G) :
104- ∫ ξ, M (𝓕 f ξ) (g ξ) = ∫ x, M (f x) (𝓕 g x) := by
104+ ∫ ξ, M (𝓕 (f : V → E) ξ) (g ξ) = ∫ x, M (f x) (𝓕 (g : V → F) x) := by
105105 have := VectorFourier.integral_bilin_fourierIntegral_eq_flip M (μ := volume) (ν := volume)
106106 (L := (innerₗ V)) continuous_fourierChar continuous_inner f.integrable g.integrable
107107 rwa [flip_innerₗ] at this
108108
109109theorem integral_sesq_fourierIntegral_eq (f : 𝓢(V, E)) (g : 𝓢(V, F)) (M : E →L⋆[ℂ] F →L[ℂ] G) :
110- ∫ ξ, M (𝓕 f ξ) (g ξ) = ∫ x, M (f x) (𝓕⁻ g x) := by
110+ ∫ ξ, M (𝓕 (f : V → E) ξ) (g ξ) = ∫ x, M (f x) (𝓕⁻ (g : V → F) x) := by
111111 have := VectorFourier.integral_sesq_fourierIntegral_eq_neg_flip M (μ := volume) (ν := volume)
112112 (L := (innerₗ V)) continuous_fourierChar continuous_inner f.integrable g.integrable
113113 rwa [flip_innerₗ] at this
@@ -116,19 +116,19 @@ theorem integral_sesq_fourierIntegral_eq (f : 𝓢(V, E)) (g : 𝓢(V, F)) (M :
116116
117117Version where the multiplication is replaced by a general bilinear form `M`. -/
118118theorem integral_sesq_fourier_fourier (f : 𝓢(V, E)) (g : 𝓢(V, F)) (M : E →L⋆[ℂ] F →L[ℂ] G) :
119- ∫ ξ, M (𝓕 f ξ) (𝓕 g ξ) = ∫ x, M (f x) (g x) := by
119+ ∫ ξ, M (𝓕 (f : V → E) ξ) (𝓕 (g : V → F) ξ) = ∫ x, M (f x) (g x) := by
120120 simpa only [fourierTransformCLM_apply, fourier_inversion]
121121 using integral_sesq_fourierIntegral_eq f (fourierTransformCLM ℂ g) M
122122
123123variable {H : Type *} [NormedAddCommGroup H] [InnerProductSpace ℂ H] [CompleteSpace H]
124124
125125/-- Plancherel's theorem for Schwartz functions. -/
126126theorem integral_inner_fourier_fourier (f g : 𝓢(V, H)) :
127- ∫ ξ, ⟪𝓕 f ξ, 𝓕 g ξ⟫ = ∫ x, ⟪f x, g x⟫ :=
127+ ∫ ξ, ⟪𝓕 (f : V → H) ξ, 𝓕 (g : V → H) ξ⟫ = ∫ x, ⟪f x, g x⟫ :=
128128 integral_sesq_fourier_fourier f g (innerSL ℂ)
129129
130130theorem integral_norm_sq_fourier (f : 𝓢(V, H)) :
131- ∫ ξ, ‖𝓕 f ξ‖^2 = ∫ x, ‖f x‖^2 := by
131+ ∫ ξ, ‖𝓕 (f : V → H) ξ‖^2 = ∫ x, ‖f x‖^2 := by
132132 apply Complex.ofRealLI.injective
133133 simp only [← LinearIsometry.integral_comp_comm]
134134 convert integral_inner_fourier_fourier f f <;>
@@ -153,22 +153,22 @@ noncomputable def fourierTransformCLE : 𝓢(V, E) ≃L[𝕜] 𝓢(V, E) where
153153 left_inv := by
154154 intro f
155155 ext x
156- change 𝓕 (𝓕 f ) (-x) = f x
156+ change 𝓕 (𝓕 (f : V → E) ) (-x) = f x
157157 rw [← fourierIntegralInv_eq_fourierIntegral_neg, Continuous.fourier_inversion f.continuous
158158 f.integrable (fourierTransformCLM 𝕜 f).integrable]
159159 right_inv := by
160160 intro f
161161 ext x
162- change 𝓕 (fun x ↦ (𝓕 f) (-x)) x = f x
162+ change 𝓕 (fun (x : V) ↦ ((𝓕 (f : V → E)) (-x) : E )) x = f x
163163 simp_rw [← fourierIntegralInv_eq_fourierIntegral_neg, Continuous.fourier_inversion_inv
164164 f.continuous f.integrable (fourierTransformCLM 𝕜 f).integrable]
165165 continuous_invFun := ContinuousLinearMap.continuous _
166166
167167@[simp] lemma fourierTransformCLE_apply (f : 𝓢(V, E)) :
168- fourierTransformCLE 𝕜 f = 𝓕 f := rfl
168+ fourierTransformCLE 𝕜 f = 𝓕 (f : V → E) := rfl
169169
170170@[simp] lemma fourierTransformCLE_symm_apply (f : 𝓢(V, E)) :
171- (fourierTransformCLE 𝕜).symm f = 𝓕⁻ f := by
171+ (fourierTransformCLE 𝕜).symm f = 𝓕⁻ (f : V → E) := by
172172 ext x
173173 exact (fourierIntegralInv_eq_fourierIntegral_neg f x).symm
174174
0 commit comments