Skip to content

Commit efdba04

Browse files
committed
chore(*): use autoparams and fun_prop (#31317)
1 parent 728f668 commit efdba04

File tree

11 files changed

+9
-22
lines changed

11 files changed

+9
-22
lines changed

Mathlib/Analysis/CStarAlgebra/ContinuousFunctionalCalculus/Restrict.lean

Lines changed: 0 additions & 6 deletions
Original file line numberDiff line numberDiff line change
@@ -36,9 +36,6 @@ def homeomorph {R S A : Type*} [Semifield R] [Semifield S] [Ring A]
3636
invFun := MapsTo.restrict (algebraMap R S) _ _ (image_subset_iff.mp h.algebraMap_image.subset)
3737
left_inv x := Subtype.ext <| h.rightInvOn x.2
3838
right_inv x := Subtype.ext <| h.left_inv x
39-
continuous_toFun := continuous_induced_rng.mpr <| f.continuous.comp continuous_induced_dom
40-
continuous_invFun := continuous_induced_rng.mpr <|
41-
continuous_algebraMap R S |>.comp continuous_induced_dom
4239

4340
lemma compactSpace {R S A : Type*} [Semifield R] [Semifield S] [Ring A]
4441
[Algebra R S] [Algebra R A] [Algebra S A] [IsScalarTower R S A] [TopologicalSpace R]
@@ -181,9 +178,6 @@ def homeomorph {R S A : Type*} [Semifield R] [Field S] [NonUnitalRing A]
181178
invFun := MapsTo.restrict (algebraMap R S) _ _ (image_subset_iff.mp h.algebraMap_image.subset)
182179
left_inv x := Subtype.ext <| h.rightInvOn x.2
183180
right_inv x := Subtype.ext <| h.left_inv x
184-
continuous_toFun := continuous_induced_rng.mpr <| f.continuous.comp continuous_induced_dom
185-
continuous_invFun := continuous_induced_rng.mpr <|
186-
continuous_algebraMap R S |>.comp continuous_induced_dom
187181

188182
universe u v w
189183

Mathlib/Analysis/Complex/Circle.lean

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -197,7 +197,7 @@ theorem fourierChar_apply' (x : ℝ) : 𝐞 x = Circle.exp (2 * π * x) := rfl
197197

198198
theorem fourierChar_apply (x : ℝ) : 𝐞 x = Complex.exp (↑(2 * π * x) * Complex.I) := rfl
199199

200-
@[continuity]
200+
@[continuity, fun_prop]
201201
theorem continuous_fourierChar : Continuous 𝐞 := Circle.exp.continuous.comp (continuous_mul_left _)
202202

203203
theorem fourierChar_ne_one : fourierChar ≠ 1 := by
@@ -218,8 +218,8 @@ theorem probChar_apply' (x : ℝ) : probChar x = Circle.exp x := rfl
218218

219219
theorem probChar_apply (x : ℝ) : probChar x = Complex.exp (x * Complex.I) := rfl
220220

221-
@[continuity]
222-
theorem continuous_probChar : Continuous probChar := Circle.exp.continuous
221+
@[continuity, fun_prop]
222+
theorem continuous_probChar : Continuous probChar := map_continuous Circle.exp
223223

224224
theorem probChar_ne_one : probChar ≠ 1 := by
225225
rw [DFunLike.ne_iff]

Mathlib/Analysis/Fourier/AddCircleMulti.lean

Lines changed: 1 addition & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -49,8 +49,7 @@ variable (n : d → ℤ)
4949
/-- Exponential monomials in `d` variables. -/
5050
def mFourier : C(UnitAddTorus d, ℂ) where
5151
toFun x := ∏ i : d, fourier (n i) (x i)
52-
continuous_toFun := continuous_finset_prod _
53-
fun i _ ↦ (fourier (n i)).continuous.comp (continuous_apply i)
52+
continuous_toFun := by fun_prop
5453

5554
variable {n} {x : UnitAddTorus d}
5655

Mathlib/Condensed/Light/TopCatAdjunction.lean

Lines changed: 0 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -163,7 +163,6 @@ can only prove this for `X : TopCat.{0}`.
163163
noncomputable def sequentialAdjunctionHomeo (X : TopCat.{0}) [SequentialSpace X] :
164164
X.toLightCondSet.toTopCat ≃ₜ X where
165165
toEquiv := topCatAdjunctionCounitEquiv X
166-
continuous_toFun := (topCatAdjunctionCounit X).hom.continuous
167166
continuous_invFun := by
168167
apply SeqContinuous.continuous
169168
unfold SeqContinuous

Mathlib/Condensed/TopCatAdjunction.lean

Lines changed: 0 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -178,7 +178,6 @@ noncomputable def compactlyGeneratedAdjunctionCounitHomeo
178178
(X : TopCat.{u + 1}) [UCompactlyGeneratedSpace.{u} X] :
179179
X.toCondensedSet.toTopCat ≃ₜ X where
180180
toEquiv := topCatAdjunctionCounitEquiv X
181-
continuous_toFun := (topCatAdjunctionCounit X).hom.continuous
182181
continuous_invFun := by
183182
apply continuous_from_uCompactlyGeneratedSpace
184183
exact fun _ _ ↦ continuous_coinducingCoprod X.toCondensedSet _

Mathlib/Topology/Category/CompHausLike/Limits.lean

Lines changed: 1 addition & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -199,8 +199,7 @@ pairs `(x,y)` such that `f x = g y`, with the topology induced by the product.
199199
def pullback : CompHausLike P :=
200200
letI set := { xy : X × Y | f xy.fst = g xy.snd }
201201
haveI : CompactSpace set :=
202-
isCompact_iff_compactSpace.mp (isClosed_eq (f.hom.continuous.comp continuous_fst)
203-
(g.hom.continuous.comp continuous_snd)).isCompact
202+
isCompact_iff_compactSpace.mp (isClosed_eq (by fun_prop) (by fun_prop)).isCompact
204203
CompHausLike.of P set
205204

206205
/--

Mathlib/Topology/Compactness/CompactlyGeneratedSpace.lean

Lines changed: 1 addition & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -207,8 +207,7 @@ instance (priority := 100) [SequentialSpace X] : UCompactlyGeneratedSpace.{u} X
207207
apply IsClosed.mem_of_tendsto _ ((continuous_uliftUp.tendsto ∞).comp this)
208208
· simp only [Function.comp_apply, mem_preimage, eventually_atTop, ge_iff_le]
209209
exact ⟨0, fun b _ ↦ hu b⟩
210-
· exact h (CompHaus.of (ULift.{u} (OnePoint ℕ)))
211-
⟨g, (continuousMapMkNat u p hup).continuous.comp continuous_uliftDown⟩
210+
· exact h (CompHaus.of (ULift.{u} (OnePoint ℕ))) ⟨g, by fun_prop⟩
212211

213212
end UCompactlyGeneratedSpace
214213

Mathlib/Topology/ContinuousMap/ZeroAtInfty.lean

Lines changed: 0 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -130,7 +130,6 @@ infinity. -/
130130
def ContinuousMap.liftZeroAtInfty [CompactSpace α] : C(α, β) ≃ C₀(α, β) where
131131
toFun f :=
132132
{ toFun := f
133-
continuous_toFun := f.continuous
134133
zero_at_infty' := by simp }
135134
invFun f := f
136135

Mathlib/Topology/PartitionOfUnity.lean

Lines changed: 1 addition & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -544,8 +544,7 @@ theorem exists_finset_toPOUFun_eventuallyEq (i : ι) (x : X) : ∃ t : Finset ι
544544
exact hf.mem_toFinset.2 ⟨y, ⟨hj, hyU⟩⟩
545545

546546
theorem continuous_toPOUFun (i : ι) : Continuous (f.toPOUFun i) := by
547-
refine (f i).continuous.mul <|
548-
continuous_finprod_cond (fun j _ => continuous_const.sub (f j).continuous) ?_
547+
refine (map_continuous <| f i).mul <| continuous_finprod_cond (fun j _ => by fun_prop) ?_
549548
simp only [mulSupport_one_sub]
550549
exact f.locallyFinite
551550

Mathlib/Topology/TietzeExtension.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -459,7 +459,7 @@ theorem exists_extension_forall_mem_of_isClosedEmbedding (f : C(X, ℝ)) {t : Se
459459
have h : ℝ ≃o Ioo (-1 : ℝ) 1 := orderIsoIooNegOneOne ℝ
460460
let F : X →ᵇ ℝ :=
461461
{ toFun := (↑) ∘ h ∘ f
462-
continuous_toFun := continuous_subtype_val.comp (h.continuous.comp f.continuous)
462+
continuous_toFun := by fun_prop
463463
map_bounded' := isBounded_range_iff.1
464464
((isBounded_Ioo (-1 : ℝ) 1).subset <| range_subset_iff.2 fun x => (h (f x)).2) }
465465
let t' : Set ℝ := (↑) ∘ h '' t

0 commit comments

Comments
 (0)