Skip to content

Commit f230ebb

Browse files
committed
chore: rename FiniteDimensional.of_fintype_basis (#31543)
The lemma has a Finite hypothesis now, not a Fintype one. The new name was discussed on zulip: https://leanprover.zulipchat.com/#narrow/channel/287929-mathlib4/topic/Naming.20convention/near/555088215
1 parent bb14de4 commit f230ebb

File tree

15 files changed

+37
-33
lines changed

15 files changed

+37
-33
lines changed

Archive/Sensitivity.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -248,7 +248,7 @@ theorem dim_V : Module.rank ℝ (V n) = 2 ^ n := by
248248

249249
open Classical in
250250
instance : FiniteDimensional ℝ (V n) :=
251-
FiniteDimensional.of_fintype_basis (dualBases_e_ε _).basis
251+
(dualBases_e_ε _).basis.finiteDimensional_of_finite
252252

253253
theorem finrank_V : finrank ℝ (V n) = 2 ^ n := by
254254
have := @dim_V n

Mathlib/Algebra/Module/ZLattice/Basic.lean

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -332,7 +332,7 @@ theorem setFinite_inter [ProperSpace E] [Finite ι] {s : Set E} (hs : Bornology.
332332
theorem fundamentalDomain_measurableSet [MeasurableSpace E] [OpensMeasurableSpace E] [Finite ι] :
333333
MeasurableSet (fundamentalDomain b) := by
334334
cases nonempty_fintype ι
335-
haveI : FiniteDimensional ℝ E := FiniteDimensional.of_fintype_basis b
335+
haveI : FiniteDimensional ℝ E := b.finiteDimensional_of_finite
336336
let D : Set (ι → ℝ) := Set.pi Set.univ fun _ : ι => Set.Ico (0 : ℝ) 1
337337
rw [(_ : fundamentalDomain b = b.equivFun.toLinearMap ⁻¹' D)]
338338
· refine measurableSet_preimage (LinearMap.continuous_of_finiteDimensional _).measurable ?_
@@ -365,7 +365,7 @@ theorem measure_fundamentalDomain_ne_zero [Finite ι] [MeasurableSpace E] [Borel
365365
theorem measure_fundamentalDomain [Fintype ι] [DecidableEq ι] [MeasurableSpace E] (μ : Measure E)
366366
[BorelSpace E] [Measure.IsAddHaarMeasure μ] (b₀ : Basis ι ℝ E) :
367367
μ (fundamentalDomain b) = ENNReal.ofReal |b₀.det b| * μ (fundamentalDomain b₀) := by
368-
have : FiniteDimensional ℝ E := FiniteDimensional.of_fintype_basis b
368+
have : FiniteDimensional ℝ E := b.finiteDimensional_of_finite
369369
convert μ.addHaar_preimage_linearEquiv (b.equiv b₀ (Equiv.refl ι)) (fundamentalDomain b₀)
370370
· rw [Set.eq_preimage_iff_image_eq (LinearEquiv.bijective _), map_fundamentalDomain,
371371
Basis.map_equiv, Equiv.refl_symm, Basis.reindex_refl]
@@ -394,7 +394,7 @@ theorem fundamentalDomain_ae_parallelepiped [Fintype ι] [MeasurableSpace E] (μ
394394
[BorelSpace E] [Measure.IsAddHaarMeasure μ] :
395395
fundamentalDomain b =ᵐ[μ] parallelepiped b := by
396396
classical
397-
have : FiniteDimensional ℝ E := FiniteDimensional.of_fintype_basis b
397+
have : FiniteDimensional ℝ E := b.finiteDimensional_of_finite
398398
rw [← measure_symmDiff_eq_zero_iff, symmDiff_of_le (fundamentalDomain_subset_parallelepiped b)]
399399
suffices (parallelepiped b \ fundamentalDomain b) ⊆ ⋃ i,
400400
AffineSubspace.mk' (b i) (span ℝ (b '' (Set.univ \ {i}))) by

Mathlib/Analysis/Normed/Module/FiniteDimension.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -151,7 +151,7 @@ theorem ContinuousLinearMap.continuous_det : Continuous fun f : E →L[𝕜] E =
151151
-- TODO: this could be easier with `det_cases`
152152
by_cases h : ∃ s : Finset E, Nonempty (Basis (↥s) 𝕜 E)
153153
· rcases h with ⟨s, ⟨b⟩⟩
154-
haveI : FiniteDimensional 𝕜 E := FiniteDimensional.of_fintype_basis b
154+
haveI : FiniteDimensional 𝕜 E := b.finiteDimensional_of_finite
155155
classical
156156
simp_rw [LinearMap.det_eq_det_toMatrix_of_finset b]
157157
refine Continuous.matrix_det ?_

Mathlib/LinearAlgebra/AffineSpace/FiniteDimensional.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -771,7 +771,7 @@ variable [DivisionRing k] [Module k V]
771771

772772
protected theorem finiteDimensional [Finite ι] (b : AffineBasis ι k P) : FiniteDimensional k V :=
773773
let ⟨i⟩ := b.nonempty
774-
FiniteDimensional.of_fintype_basis (b.basisOf i)
774+
(b.basisOf i).finiteDimensional_of_finite
775775

776776
protected theorem finite [FiniteDimensional k V] (b : AffineBasis ι k P) : Finite ι :=
777777
finite_of_fin_dim_affineIndependent k b.ind

Mathlib/LinearAlgebra/BilinearForm/DualLattice.lean

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -115,7 +115,7 @@ lemma dualSubmodule_dualSubmodule_flip_of_basis {ι : Type*} [Finite ι]
115115
B.dualSubmodule (B.flip.dualSubmodule (Submodule.span R (Set.range b))) =
116116
Submodule.span R (Set.range b) := by
117117
classical
118-
letI := FiniteDimensional.of_fintype_basis b
118+
letI := b.finiteDimensional_of_finite
119119
rw [dualSubmodule_span_of_basis _ hB.flip, dualSubmodule_span_of_basis B hB,
120120
dualBasis_dualBasis_flip hB]
121121

@@ -124,7 +124,7 @@ lemma dualSubmodule_flip_dualSubmodule_of_basis {ι : Type*} [Finite ι]
124124
B.flip.dualSubmodule (B.dualSubmodule (Submodule.span R (Set.range b))) =
125125
Submodule.span R (Set.range b) := by
126126
classical
127-
letI := FiniteDimensional.of_fintype_basis b
127+
letI := b.finiteDimensional_of_finite
128128
rw [dualSubmodule_span_of_basis B hB, dualSubmodule_span_of_basis _ hB.flip,
129129
dualBasis_flip_dualBasis hB]
130130

@@ -133,7 +133,7 @@ lemma dualSubmodule_dualSubmodule_of_basis
133133
B.dualSubmodule (B.dualSubmodule (Submodule.span R (Set.range b))) =
134134
Submodule.span R (Set.range b) := by
135135
classical
136-
letI := FiniteDimensional.of_fintype_basis b
136+
letI := b.finiteDimensional_of_finite
137137
rw [dualSubmodule_span_of_basis B hB, dualSubmodule_span_of_basis B hB,
138138
dualBasis_dualBasis hB hB']
139139

Mathlib/LinearAlgebra/BilinearForm/Properties.lean

Lines changed: 3 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -371,21 +371,21 @@ variable {ι : Type*} [DecidableEq ι] [Finite ι]
371371
where `B` is a nondegenerate (symmetric) bilinear form and `b` is a finite basis. -/
372372
noncomputable def dualBasis (B : BilinForm K V) (hB : B.Nondegenerate) (b : Basis ι K V) :
373373
Basis ι K V :=
374-
haveI := FiniteDimensional.of_fintype_basis b
374+
haveI := b.finiteDimensional_of_finite
375375
b.dualBasis.map (B.toDual hB).symm
376376

377377
variable {B : BilinForm K V}
378378

379379
@[simp]
380380
theorem dualBasis_repr_apply (hB : B.Nondegenerate) (b : Basis ι K V) (x i) :
381381
(B.dualBasis hB b).repr x i = B x (b i) := by
382-
have := FiniteDimensional.of_fintype_basis b
382+
have := b.finiteDimensional_of_finite
383383
rw [dualBasis, Basis.map_repr, LinearEquiv.symm_symm, LinearEquiv.trans_apply,
384384
Basis.dualBasis_repr, toDual_def]
385385

386386
theorem apply_dualBasis_left (hB : B.Nondegenerate) (b : Basis ι K V) (i j) :
387387
B (B.dualBasis hB b i) (b j) = if j = i then 1 else 0 := by
388-
have := FiniteDimensional.of_fintype_basis b
388+
have := b.finiteDimensional_of_finite
389389
rw [dualBasis, Basis.map_apply, Basis.coe_dualBasis, ← toDual_def hB,
390390
LinearEquiv.apply_symm_apply, Basis.coord_apply, Basis.repr_self, Finsupp.single_apply]
391391

Mathlib/LinearAlgebra/Complex/FiniteDimensional.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -20,7 +20,7 @@ open Module
2020

2121
namespace Complex
2222

23-
instance : FiniteDimensional ℝ ℂ := .of_fintype_basis basisOneI
23+
instance : FiniteDimensional ℝ ℂ := basisOneI.finiteDimensional_of_finite
2424

2525
/-- `ℂ` is a finite extension of `ℝ` of degree 2, i.e `[ℂ : ℝ] = 2` -/
2626
@[simp, stacks 09G4]

Mathlib/LinearAlgebra/FiniteDimensional/Defs.lean

Lines changed: 8 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -32,7 +32,7 @@ that all these points of view are equivalent, with the following lemmas
3232
is `Fin` (in `Mathlib/LinearAlgebra/Dimension/Free.lean`)
3333
- `fintypeBasisIndex` states that a finite-dimensional
3434
vector space has a finite basis
35-
- `of_fintype_basis` states that the existence of a basis indexed by a
35+
- `Module.Basis.finiteDimensional_of_finite` states that the existence of a basis indexed by a
3636
finite type implies finite-dimensionality
3737
- `of_finite_basis` states that the existence of a basis indexed by a
3838
finite set implies finite-dimensionality
@@ -66,7 +66,7 @@ universe u v v' w
6666
open Cardinal Module Submodule
6767

6868
/-- `FiniteDimensional` vector spaces are defined to be finite modules.
69-
Use `FiniteDimensional.of_fintype_basis` to prove finite dimension from another definition. -/
69+
Use `Module.Basis.finiteDimensional_of_finite` to prove finite dimension from another definition. -/
7070
abbrev FiniteDimensional (K V : Type*) [DivisionRing K] [AddCommGroup V] [Module K V] :=
7171
Module.Finite K V
7272

@@ -98,9 +98,13 @@ instance finiteDimensional_pi' {ι : Type*} [Finite ι] (M : ι → Type*) [∀
9898
variable {K V}
9999

100100
/-- If a vector space has a finite basis, then it is finite-dimensional. -/
101-
theorem of_fintype_basis {ι : Type w} [Finite ι] (h : Basis ι K V) : FiniteDimensional K V :=
101+
theorem _root_.Module.Basis.finiteDimensional_of_finite {ι : Type w} [Finite ι] (h : Basis ι K V) :
102+
FiniteDimensional K V :=
102103
Module.Finite.of_basis h
103104

105+
@[deprecated (since := "2025-11-12")]
106+
alias of_fintype_basis := Module.Basis.finiteDimensional_of_finite
107+
104108
/-- If a vector space is `FiniteDimensional`, all bases are indexed by a finite type -/
105109
noncomputable def fintypeBasisIndex {ι : Type*} [FiniteDimensional K V] (b : Basis ι K V) :
106110
Fintype ι :=
@@ -116,7 +120,7 @@ finite-dimensional. -/
116120
theorem of_finite_basis {ι : Type w} {s : Set ι} (h : Basis s K V) (hs : Set.Finite s) :
117121
FiniteDimensional K V :=
118122
haveI := hs.fintype
119-
of_fintype_basis h
123+
h.finiteDimensional_of_finite
120124

121125
/-- A subspace of a finite-dimensional space is also finite-dimensional.
122126

Mathlib/LinearAlgebra/PerfectPairing/Restrict.lean

Lines changed: 1 addition & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -242,7 +242,7 @@ private lemma restrictScalars_field_aux
242242
obtain ⟨n, -, b', -⟩ := p.exists_basis_basis_of_span_eq_top_of_mem_algebraMap _ _ hM hN <| by
243243
rintro - ⟨m, rfl⟩ - ⟨n, rfl⟩
244244
exact hp m n
245-
have : FiniteDimensional K (LinearMap.range i) := FiniteDimensional.of_fintype_basis b'
245+
have : FiniteDimensional K (LinearMap.range i) := b'.finiteDimensional_of_finite
246246
exact Finite.equiv (LinearEquiv.ofInjective i hi).symm
247247

248248
include hi hj in

Mathlib/MeasureTheory/Measure/Haar/OfBasis.lean

Lines changed: 5 additions & 5 deletions
Original file line numberDiff line numberDiff line change
@@ -207,9 +207,9 @@ theorem parallelepiped_reindex (b : Basis ι ℝ E) (e : ι ≃ ι') :
207207

208208
theorem parallelepiped_map (b : Basis ι ℝ E) (e : E ≃ₗ[ℝ] F) :
209209
(b.map e).parallelepiped = b.parallelepiped.map e
210-
(haveI := FiniteDimensional.of_fintype_basis b
210+
(haveI := b.finiteDimensional_of_finite
211211
LinearMap.continuous_of_finiteDimensional e.toLinearMap)
212-
(haveI := FiniteDimensional.of_fintype_basis (b.map e)
212+
(haveI := (b.map e).finiteDimensional_of_finite
213213
LinearMap.isOpenMap_of_finiteDimensional _ e.surjective) :=
214214
PositiveCompacts.ext (image_parallelepiped e.toLinearMap _).symm
215215

@@ -254,7 +254,7 @@ instance _root_.isAddHaarMeasure_basis_addHaar (b : Basis ι ℝ E) : IsAddHaarM
254254
rw [Basis.addHaar]; exact Measure.isAddHaarMeasure_addHaarMeasure _
255255

256256
instance (b : Basis ι ℝ E) : SigmaFinite b.addHaar := by
257-
have : FiniteDimensional ℝ E := FiniteDimensional.of_fintype_basis b
257+
have : FiniteDimensional ℝ E := b.finiteDimensional_of_finite
258258
rw [Basis.addHaar_def]; exact sigmaFinite_addHaarMeasure
259259

260260
/-- Let `μ` be a σ-finite left invariant measure on `E`. Then `μ` is equal to the Haar measure
@@ -277,8 +277,8 @@ variable [MeasurableSpace F] [BorelSpace F] [SecondCountableTopologyEither E F]
277277

278278
theorem prod_addHaar (v : Basis ι ℝ E) (w : Basis ι' ℝ F) :
279279
(v.prod w).addHaar = v.addHaar.prod w.addHaar := by
280-
have : FiniteDimensional ℝ E := FiniteDimensional.of_fintype_basis v
281-
have : FiniteDimensional ℝ F := FiniteDimensional.of_fintype_basis w
280+
have : FiniteDimensional ℝ E := v.finiteDimensional_of_finite
281+
have : FiniteDimensional ℝ F := w.finiteDimensional_of_finite
282282
simp [(v.prod w).addHaar_eq_iff, Basis.prod_parallelepiped, Basis.addHaar_self]
283283

284284
end Module.Basis

0 commit comments

Comments
 (0)