@@ -32,7 +32,7 @@ that all these points of view are equivalent, with the following lemmas
3232 is `Fin` (in `Mathlib/LinearAlgebra/Dimension/Free.lean`)
3333- `fintypeBasisIndex` states that a finite-dimensional
3434 vector space has a finite basis
35- - `of_fintype_basis ` states that the existence of a basis indexed by a
35+ - `Module.Basis.finiteDimensional_of_finite ` states that the existence of a basis indexed by a
3636 finite type implies finite-dimensionality
3737- `of_finite_basis` states that the existence of a basis indexed by a
3838 finite set implies finite-dimensionality
@@ -66,7 +66,7 @@ universe u v v' w
6666open Cardinal Module Submodule
6767
6868/-- `FiniteDimensional` vector spaces are defined to be finite modules.
69- Use `FiniteDimensional.of_fintype_basis ` to prove finite dimension from another definition. -/
69+ Use `Module.Basis.finiteDimensional_of_finite ` to prove finite dimension from another definition. -/
7070abbrev FiniteDimensional (K V : Type *) [DivisionRing K] [AddCommGroup V] [Module K V] :=
7171 Module.Finite K V
7272
@@ -98,9 +98,13 @@ instance finiteDimensional_pi' {ι : Type*} [Finite ι] (M : ι → Type*) [∀
9898variable {K V}
9999
100100/-- If a vector space has a finite basis, then it is finite-dimensional. -/
101- theorem of_fintype_basis {ι : Type w} [Finite ι] (h : Basis ι K V) : FiniteDimensional K V :=
101+ theorem _root_.Module.Basis.finiteDimensional_of_finite {ι : Type w} [Finite ι] (h : Basis ι K V) :
102+ FiniteDimensional K V :=
102103 Module.Finite.of_basis h
103104
105+ @[deprecated (since := "2025-11-12")]
106+ alias of_fintype_basis := Module.Basis.finiteDimensional_of_finite
107+
104108/-- If a vector space is `FiniteDimensional`, all bases are indexed by a finite type -/
105109noncomputable def fintypeBasisIndex {ι : Type *} [FiniteDimensional K V] (b : Basis ι K V) :
106110 Fintype ι :=
@@ -116,7 +120,7 @@ finite-dimensional. -/
116120theorem of_finite_basis {ι : Type w} {s : Set ι} (h : Basis s K V) (hs : Set.Finite s) :
117121 FiniteDimensional K V :=
118122 haveI := hs.fintype
119- of_fintype_basis h
123+ h.finiteDimensional_of_finite
120124
121125/-- A subspace of a finite-dimensional space is also finite-dimensional.
122126
0 commit comments