Skip to content

Commit f2d3893

Browse files
committed
refactor: lemma expressing ContinuousAt using a punctured neighbourhood (#25600)
Co-authored-by: Miyahara Kō <52843868+Komyyy@users.noreply.github.com>
1 parent c4b79e9 commit f2d3893

File tree

1 file changed

+4
-0
lines changed

1 file changed

+4
-0
lines changed

Mathlib/Topology/ContinuousOn.lean

Lines changed: 4 additions & 0 deletions
Original file line numberDiff line numberDiff line change
@@ -284,6 +284,10 @@ alias nhdsWithin_compl_singleton_sup_pure := nhdsNE_sup_pure
284284
@[simp]
285285
theorem pure_sup_nhdsNE (a : α) : pure a ⊔ 𝓝[≠] a = 𝓝 a := by rw [← sup_comm, nhdsNE_sup_pure]
286286

287+
lemma continuousAt_iff_punctured_nhds [TopologicalSpace β] {f : α → β} {a : α} :
288+
ContinuousAt f a ↔ Tendsto f (𝓝[≠] a) (𝓝 (f a)) := by
289+
simp [ContinuousAt, - pure_sup_nhdsNE, ← pure_sup_nhdsNE a, tendsto_pure_nhds]
290+
287291
theorem nhdsWithin_prod [TopologicalSpace β]
288292
{s u : Set α} {t v : Set β} {a : α} {b : β} (hu : u ∈ 𝓝[s] a) (hv : v ∈ 𝓝[t] b) :
289293
u ×ˢ v ∈ 𝓝[s ×ˢ t] (a, b) := by

0 commit comments

Comments
 (0)