Skip to content

Commit fa06074

Browse files
committed
feat(Topology/Connected/LocPathConnected): convenience lemma for LocPathConnected + ConnectedSpacePathConnectedSpace (#30315)
1 parent 86a00bd commit fa06074

File tree

1 file changed

+5
-3
lines changed

1 file changed

+5
-3
lines changed

Mathlib/Topology/Connected/LocPathConnected.lean

Lines changed: 5 additions & 3 deletions
Original file line numberDiff line numberDiff line change
@@ -95,9 +95,11 @@ lemma pathComponentIn_mem_nhds (hF : F ∈ 𝓝 x) : pathComponentIn F x ∈
9595
exact mem_nhds_iff.mpr ⟨pathComponentIn u x, pathComponentIn_mono huF,
9696
hu.pathComponentIn x, mem_pathComponentIn_self hxu⟩
9797

98-
theorem pathConnectedSpace_iff_connectedSpace : PathConnectedSpace X ↔ ConnectedSpace X := by
99-
refine ⟨fun _ ↦ inferInstance, fun h ↦ ⟨inferInstance, fun x y ↦ ?_⟩⟩
100-
rw [← mem_pathComponent_iff, (IsClopen.pathComponent _).eq_univ] <;> simp
98+
theorem PathConnectedSpace.of_locPathConnectedSpace [ConnectedSpace X] : PathConnectedSpace X :=
99+
⟨inferInstance, by simp [← mem_pathComponent_iff, IsClopen.pathComponent _ |>.eq_univ]⟩
100+
101+
theorem pathConnectedSpace_iff_connectedSpace : PathConnectedSpace X ↔ ConnectedSpace X :=
102+
fun _ ↦ inferInstance, fun _ ↦ .of_locPathConnectedSpace⟩
101103

102104
theorem pathComponent_eq_connectedComponent (x : X) : pathComponent x = connectedComponent x :=
103105
(pathComponent_subset_component x).antisymm <|

0 commit comments

Comments
 (0)