File tree Expand file tree Collapse file tree 1 file changed +5
-3
lines changed
Mathlib/Topology/Connected Expand file tree Collapse file tree 1 file changed +5
-3
lines changed Original file line number Diff line number Diff line change @@ -95,9 +95,11 @@ lemma pathComponentIn_mem_nhds (hF : F ∈ 𝓝 x) : pathComponentIn F x ∈
9595 exact mem_nhds_iff.mpr ⟨pathComponentIn u x, pathComponentIn_mono huF,
9696 hu.pathComponentIn x, mem_pathComponentIn_self hxu⟩
9797
98- theorem pathConnectedSpace_iff_connectedSpace : PathConnectedSpace X ↔ ConnectedSpace X := by
99- refine ⟨fun _ ↦ inferInstance, fun h ↦ ⟨inferInstance, fun x y ↦ ?_⟩⟩
100- rw [← mem_pathComponent_iff, (IsClopen.pathComponent _).eq_univ] <;> simp
98+ theorem PathConnectedSpace.of_locPathConnectedSpace [ConnectedSpace X] : PathConnectedSpace X :=
99+ ⟨inferInstance, by simp [← mem_pathComponent_iff, IsClopen.pathComponent _ |>.eq_univ]⟩
100+
101+ theorem pathConnectedSpace_iff_connectedSpace : PathConnectedSpace X ↔ ConnectedSpace X :=
102+ ⟨fun _ ↦ inferInstance, fun _ ↦ .of_locPathConnectedSpace⟩
101103
102104theorem pathComponent_eq_connectedComponent (x : X) : pathComponent x = connectedComponent x :=
103105 (pathComponent_subset_component x).antisymm <|
You can’t perform that action at this time.
0 commit comments