File tree Expand file tree Collapse file tree 2 files changed +5
-10
lines changed Expand file tree Collapse file tree 2 files changed +5
-10
lines changed Original file line number Diff line number Diff line change @@ -60,16 +60,12 @@ lemma toSimpleGraphStrict_subgraph_toSimpleGraphInclusive (G : Digraph V) :
6060 fun _ _ h ↦ ⟨h.1 , Or.inl h.2 .1 ⟩
6161
6262@[mono]
63- lemma toSimpleGraphInclusive_mono : Monotone (toSimpleGraphInclusive : _ → SimpleGraph V) := by
64- intro _ _ h₁ _ _ h₂
65- apply And.intro h₂.1
66- cases h₂.2
67- · exact Or.inl <| h₁ ‹_›
68- · exact Or.inr <| h₁ ‹_›
63+ lemma toSimpleGraphInclusive_mono : Monotone (toSimpleGraphInclusive : _ → SimpleGraph V) :=
64+ fun _ _ h₁ _ _ h₂ ↦ ⟨h₂.1 , h₂.2 .imp (@h₁ _ _) (@h₁ _ _)⟩
6965
7066@[mono]
7167lemma toSimpleGraphStrict_mono : Monotone (toSimpleGraphStrict : _ → SimpleGraph V) :=
72- fun _ _ h₁ _ _ h₂ ↦ And.intro h₂.1 <| And.intro ( h₁ h₂.2 .1 ) ( h₁ h₂.2 .2 )
68+ fun _ _ h₁ _ _ h₂ ↦ ⟨ h₂.1 , h₁ h₂.2 .1 , h₁ h₂.2 .2 ⟩
7369
7470@[simp]
7571lemma toSimpleGraphInclusive_top : (⊤ : Digraph V).toSimpleGraphInclusive = ⊤ := by
Original file line number Diff line number Diff line change @@ -125,9 +125,8 @@ lemma comap_symm (G : SimpleGraph V) (e : V ≃ W) :
125125lemma map_symm (G : SimpleGraph W) (e : V ≃ W) :
126126 G.map e.symm.toEmbedding = G.comap e.toEmbedding := by rw [← comap_symm, e.symm_symm]
127127
128- theorem comap_monotone (f : V ↪ W) : Monotone (SimpleGraph.comap f) := by
129- intro G G' h _ _ ha
130- exact h ha
128+ theorem comap_monotone (f : V ↪ W) : Monotone (SimpleGraph.comap f) :=
129+ fun _ _ h _ _ ha ↦ h ha
131130
132131@[simp] lemma comap_bot (f : V → W) : (emptyGraph W).comap f = emptyGraph V := rfl
133132
You can’t perform that action at this time.
0 commit comments