Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Merged by Bors] - feat(CategoryTheory): morphism properties that have the two-out-of-three property #12460

Closed
wants to merge 21 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
11 changes: 5 additions & 6 deletions Mathlib/AlgebraicGeometry/Morphisms/FiniteType.lean
Original file line number Diff line number Diff line change
Expand Up @@ -52,14 +52,14 @@ instance (priority := 900) locallyOfFiniteTypeOfIsOpenImmersion {X Y : Scheme} (
locallyOfFiniteType_eq.symm ▸ RingHom.finiteType_is_local.affineLocally_of_isOpenImmersion f
#align algebraic_geometry.locally_of_finite_type_of_is_open_immersion AlgebraicGeometry.locallyOfFiniteTypeOfIsOpenImmersion

theorem locallyOfFiniteType_stableUnderComposition :
MorphismProperty.StableUnderComposition @LocallyOfFiniteType :=
locallyOfFiniteType_eq.symm ▸ RingHom.finiteType_is_local.affineLocally_stableUnderComposition
#align algebraic_geometry.locally_of_finite_type_stable_under_composition AlgebraicGeometry.locallyOfFiniteType_stableUnderComposition
instance locallyOfFiniteType_isStableUnderComposition :
MorphismProperty.IsStableUnderComposition @LocallyOfFiniteType :=
locallyOfFiniteType_eq.symm ▸ RingHom.finiteType_is_local.affineLocally_isStableUnderComposition
#align algebraic_geometry.locally_of_finite_type_stable_under_composition AlgebraicGeometry.locallyOfFiniteType_isStableUnderComposition

instance locallyOfFiniteTypeComp {X Y Z : Scheme} (f : X ⟶ Y) (g : Y ⟶ Z)
[hf : LocallyOfFiniteType f] [hg : LocallyOfFiniteType g] : LocallyOfFiniteType (f ≫ g) :=
locallyOfFiniteType_stableUnderComposition f g hf hg
MorphismProperty.comp_mem _ f g hf hg
#align algebraic_geometry.locally_of_finite_type_comp AlgebraicGeometry.locallyOfFiniteTypeComp

theorem locallyOfFiniteTypeOfComp {X Y Z : Scheme} (f : X ⟶ Y) (g : Y ⟶ Z)
Expand Down Expand Up @@ -95,4 +95,3 @@ theorem locallyOfFiniteType_respectsIso : MorphismProperty.RespectsIso @LocallyO
#align algebraic_geometry.locally_of_finite_type_respects_iso AlgebraicGeometry.locallyOfFiniteType_respectsIso

end AlgebraicGeometry

14 changes: 8 additions & 6 deletions Mathlib/AlgebraicGeometry/Morphisms/OpenImmersion.lean
Original file line number Diff line number Diff line change
Expand Up @@ -38,14 +38,16 @@ theorem isOpenImmersion_iff_stalk {f : X ⟶ Y} : IsOpenImmersion f ↔
· rintro ⟨h₁, h₂⟩; exact IsOpenImmersion.of_stalk_iso f h₁
#align algebraic_geometry.is_open_immersion_iff_stalk AlgebraicGeometry.isOpenImmersion_iff_stalk

theorem isOpenImmersion_stableUnderComposition :
MorphismProperty.StableUnderComposition @IsOpenImmersion := by
intro X Y Z f g h₁ h₂; exact LocallyRingedSpace.IsOpenImmersion.comp f g
#align algebraic_geometry.is_open_immersion_stable_under_composition AlgebraicGeometry.isOpenImmersion_stableUnderComposition
instance isOpenImmersion_isStableUnderComposition :
MorphismProperty.IsStableUnderComposition @IsOpenImmersion where
comp_mem f g _ _ := LocallyRingedSpace.IsOpenImmersion.comp f g
#align algebraic_geometry.is_open_immersion_stable_under_composition AlgebraicGeometry.isOpenImmersion_isStableUnderComposition

theorem isOpenImmersion_respectsIso : MorphismProperty.RespectsIso @IsOpenImmersion := by
apply isOpenImmersion_stableUnderComposition.respectsIso
intro _ _ _; infer_instance
apply MorphismProperty.respectsIso_of_isStableUnderComposition
intro _ _ f (hf : IsIso f)
have : IsIso f := hf
infer_instance
#align algebraic_geometry.is_open_immersion_respects_iso AlgebraicGeometry.isOpenImmersion_respectsIso

theorem isOpenImmersion_is_local_at_target : PropertyIsLocalAtTarget @IsOpenImmersion := by
Expand Down
7 changes: 4 additions & 3 deletions Mathlib/AlgebraicGeometry/Morphisms/QuasiCompact.lean
Original file line number Diff line number Diff line change
Expand Up @@ -242,9 +242,10 @@ theorem quasiCompact_respectsIso : MorphismProperty.RespectsIso @QuasiCompact :=
targetAffineLocally_respectsIso QuasiCompact.affineProperty_isLocal.1
#align algebraic_geometry.quasi_compact_respects_iso AlgebraicGeometry.quasiCompact_respectsIso

theorem quasiCompact_stableUnderComposition :
MorphismProperty.StableUnderComposition @QuasiCompact := fun _ _ _ _ _ _ _ => inferInstance
#align algebraic_geometry.quasi_compact_stable_under_composition AlgebraicGeometry.quasiCompact_stableUnderComposition
instance quasiCompact_isStableUnderComposition :
MorphismProperty.IsStableUnderComposition @QuasiCompact where
comp_mem _ _ _ _ := inferInstance
#align algebraic_geometry.quasi_compact_stable_under_composition AlgebraicGeometry.quasiCompact_isStableUnderComposition

theorem QuasiCompact.affineProperty_stableUnderBaseChange :
QuasiCompact.affineProperty.StableUnderBaseChange := by
Expand Down
14 changes: 7 additions & 7 deletions Mathlib/AlgebraicGeometry/Morphisms/QuasiSeparated.lean
Original file line number Diff line number Diff line change
Expand Up @@ -144,12 +144,12 @@ instance (priority := 900) quasiSeparatedOfMono {X Y : Scheme} (f : X ⟶ Y) [Mo
⟨inferInstance⟩
#align algebraic_geometry.quasi_separated_of_mono AlgebraicGeometry.quasiSeparatedOfMono

theorem quasiSeparated_stableUnderComposition :
MorphismProperty.StableUnderComposition @QuasiSeparated :=
instance quasiSeparated_isStableUnderComposition :
MorphismProperty.IsStableUnderComposition @QuasiSeparated :=
quasiSeparated_eq_diagonal_is_quasiCompact.symm ▸
quasiCompact_stableUnderComposition.diagonal quasiCompact_respectsIso
quasiCompact_stableUnderBaseChange
#align algebraic_geometry.quasi_separated_stable_under_composition AlgebraicGeometry.quasiSeparated_stableUnderComposition
(MorphismProperty.diagonal_isStableUnderComposition
quasiCompact_respectsIso quasiCompact_stableUnderBaseChange)
#align algebraic_geometry.quasi_separated_stable_under_composition AlgebraicGeometry.quasiSeparated_isStableUnderComposition

theorem quasiSeparated_stableUnderBaseChange :
MorphismProperty.StableUnderBaseChange @QuasiSeparated :=
Expand All @@ -159,7 +159,7 @@ theorem quasiSeparated_stableUnderBaseChange :

instance quasiSeparatedComp {X Y Z : Scheme} (f : X ⟶ Y) (g : Y ⟶ Z) [QuasiSeparated f]
[QuasiSeparated g] : QuasiSeparated (f ≫ g) :=
quasiSeparated_stableUnderComposition f g inferInstance inferInstance
MorphismProperty.comp_mem _ f g inferInstance inferInstance
#align algebraic_geometry.quasi_separated_comp AlgebraicGeometry.quasiSeparatedComp

theorem quasiSeparated_respectsIso : MorphismProperty.RespectsIso @QuasiSeparated :=
Expand Down Expand Up @@ -242,7 +242,7 @@ instance {X Y S : Scheme} (f : X ⟶ S) (g : Y ⟶ S) [QuasiSeparated f] :

instance {X Y Z : Scheme} (f : X ⟶ Y) (g : Y ⟶ Z) [QuasiSeparated f] [QuasiSeparated g] :
QuasiSeparated (f ≫ g) :=
quasiSeparated_stableUnderComposition f g inferInstance inferInstance
MorphismProperty.comp_mem _ f g inferInstance inferInstance

theorem quasiSeparatedSpace_of_quasiSeparated {X Y : Scheme} (f : X ⟶ Y)
[hY : QuasiSeparatedSpace Y.carrier] [QuasiSeparated f] : QuasiSeparatedSpace X.carrier := by
Expand Down
84 changes: 42 additions & 42 deletions Mathlib/AlgebraicGeometry/Morphisms/RingHomProperties.lean
Original file line number Diff line number Diff line change
Expand Up @@ -549,47 +549,47 @@ theorem affineLocally_of_comp
exact h
#align ring_hom.property_is_local.affine_locally_of_comp RingHom.PropertyIsLocal.affineLocally_of_comp

theorem affineLocally_stableUnderComposition : (affineLocally @P).StableUnderComposition := by
intro X Y S f g hf hg
let 𝒰 : ∀ i, ((S.affineCover.pullbackCover (f ≫ g)).obj i).OpenCover := by
intro i
refine' Scheme.OpenCover.bind _ fun i => Scheme.affineCover _
apply Scheme.OpenCover.pushforwardIso _
(pullbackRightPullbackFstIso g (S.affineCover.map i) f).hom
apply Scheme.Pullback.openCoverOfRight
exact (pullback g (S.affineCover.map i)).affineCover
-- Porting note: used to be - rw [hP.affine_openCover_iff (f ≫ g) S.affineCover _] - but
-- metavariables cause problems in the instance search
apply (@affine_openCover_iff _ hP _ _ (f ≫ g) S.affineCover _ ?_ ?_).mpr
rotate_left
· exact 𝒰
· intro i j; dsimp [𝒰] at *; infer_instance
· rintro i ⟨j, k⟩
dsimp at i j k
dsimp only [𝒰, Scheme.OpenCover.bind_map, Scheme.OpenCover.pushforwardIso_obj,
Scheme.Pullback.openCoverOfRight_obj, Scheme.OpenCover.pushforwardIso_map,
Scheme.Pullback.openCoverOfRight_map, Scheme.OpenCover.bind_obj]
rw [Category.assoc, Category.assoc, pullbackRightPullbackFstIso_hom_snd,
pullback.lift_snd_assoc, Category.assoc, ← Category.assoc, op_comp, Functor.map_comp]
apply hP.StableUnderComposition
· -- Porting note: used to be exact _|>. hg i j but that can't find an instance
apply hP.affine_openCover_iff _ _ _|>.mp
exact hg
· delta affineLocally at hf
-- Porting note: again strange behavior of TFAE
have := (hP.isLocal_sourceAffineLocally.affine_openCover_TFAE f).out 0 3
rw [this] at hf
-- Porting note: needed to help Lean with this instance (same as above)
have : IsOpenImmersion <|
((pullback g (S.affineCover.map i)).affineCover.map j ≫ pullback.fst) :=
LocallyRingedSpace.IsOpenImmersion.comp _ _
specialize hf ((pullback g (S.affineCover.map i)).affineCover.map j ≫ pullback.fst)
-- Porting note: again strange behavior of TFAE
have := (hP.affine_openCover_TFAE
(pullback.snd : pullback f ((pullback g (S.affineCover.map i)).affineCover.map j ≫
pullback.fst) ⟶ _)).out 0 3
rw [this] at hf
apply hf
#align ring_hom.property_is_local.affine_locally_stable_under_composition RingHom.PropertyIsLocal.affineLocally_stableUnderComposition
theorem affineLocally_isStableUnderComposition : (affineLocally @P).IsStableUnderComposition where
comp_mem {X Y S} f g hf hg := by
let 𝒰 : ∀ i, ((S.affineCover.pullbackCover (f ≫ g)).obj i).OpenCover := by
intro i
refine' Scheme.OpenCover.bind _ fun i => Scheme.affineCover _
apply Scheme.OpenCover.pushforwardIso _
(pullbackRightPullbackFstIso g (S.affineCover.map i) f).hom
apply Scheme.Pullback.openCoverOfRight
exact (pullback g (S.affineCover.map i)).affineCover
-- Porting note: used to be - rw [hP.affine_openCover_iff (f ≫ g) S.affineCover _] - but
-- metavariables cause problems in the instance search
apply (@affine_openCover_iff _ hP _ _ (f ≫ g) S.affineCover _ ?_ ?_).mpr
rotate_left
· exact 𝒰
· intro i j; dsimp [𝒰] at *; infer_instance
· rintro i ⟨j, k⟩
dsimp at i j k
dsimp only [𝒰, Scheme.OpenCover.bind_map, Scheme.OpenCover.pushforwardIso_obj,
Scheme.Pullback.openCoverOfRight_obj, Scheme.OpenCover.pushforwardIso_map,
Scheme.Pullback.openCoverOfRight_map, Scheme.OpenCover.bind_obj]
rw [Category.assoc, Category.assoc, pullbackRightPullbackFstIso_hom_snd,
pullback.lift_snd_assoc, Category.assoc, ← Category.assoc, op_comp, Functor.map_comp]
apply hP.StableUnderComposition
· -- Porting note: used to be exact _|>. hg i j but that can't find an instance
apply hP.affine_openCover_iff _ _ _|>.mp
exact hg
· delta affineLocally at hf
-- Porting note: again strange behavior of TFAE
have := (hP.isLocal_sourceAffineLocally.affine_openCover_TFAE f).out 0 3
rw [this] at hf
-- Porting note: needed to help Lean with this instance (same as above)
have : IsOpenImmersion <|
((pullback g (S.affineCover.map i)).affineCover.map j ≫ pullback.fst) :=
LocallyRingedSpace.IsOpenImmersion.comp _ _
specialize hf ((pullback g (S.affineCover.map i)).affineCover.map j ≫ pullback.fst)
-- Porting note: again strange behavior of TFAE
have := (hP.affine_openCover_TFAE
(pullback.snd : pullback f ((pullback g (S.affineCover.map i)).affineCover.map j ≫
pullback.fst) ⟶ _)).out 0 3
rw [this] at hf
apply hf
#align ring_hom.property_is_local.affine_locally_stable_under_composition RingHom.PropertyIsLocal.affineLocally_isStableUnderComposition

end RingHom.PropertyIsLocal
24 changes: 16 additions & 8 deletions Mathlib/AlgebraicGeometry/Morphisms/UniversallyClosed.lean
Original file line number Diff line number Diff line change
Expand Up @@ -54,17 +54,27 @@ theorem universallyClosed_stableUnderBaseChange : StableUnderBaseChange @Univers
universallyClosed_eq.symm ▸ universally_stableUnderBaseChange (topologically @IsClosedMap)
#align algebraic_geometry.universally_closed_stable_under_base_change AlgebraicGeometry.universallyClosed_stableUnderBaseChange

theorem universallyClosed_stableUnderComposition : StableUnderComposition @UniversallyClosed := by
instance isClosedMap_isStableUnderComposition :
IsStableUnderComposition (topologically @IsClosedMap) where
comp_mem f g hf hg := IsClosedMap.comp (f := f.1.base) (g := g.1.base) hg hf

instance universallyClosed_isStableUnderComposition :
IsStableUnderComposition @UniversallyClosed := by
rw [universallyClosed_eq]
exact StableUnderComposition.universally (fun X Y Z f g hf hg =>
IsClosedMap.comp (f := f.1.base) (g := g.1.base) hg hf)
#align algebraic_geometry.universally_closed_stable_under_composition AlgebraicGeometry.universallyClosed_stableUnderComposition
infer_instance
#align algebraic_geometry.universally_closed_stable_under_composition AlgebraicGeometry.universallyClosed_isStableUnderComposition

instance universallyClosedTypeComp {X Y Z : Scheme} (f : X ⟶ Y) (g : Y ⟶ Z)
[hf : UniversallyClosed f] [hg : UniversallyClosed g] : UniversallyClosed (f ≫ g) :=
universallyClosed_stableUnderComposition f g hf hg
comp_mem _ _ _ hf hg
#align algebraic_geometry.universally_closed_type_comp AlgebraicGeometry.universallyClosedTypeComp

theorem topologically_isClosedMap_respectsIso : RespectsIso (topologically @IsClosedMap) := by
apply MorphismProperty.respectsIso_of_isStableUnderComposition
intro _ _ f hf
have : IsIso f := hf
exact (TopCat.homeoOfIso (Scheme.forgetToTop.mapIso (asIso f))).isClosedMap

instance universallyClosedFst {X Y Z : Scheme} (f : X ⟶ Z) (g : Y ⟶ Z) [hg : UniversallyClosed g] :
UniversallyClosed (pullback.fst : pullback f g ⟶ _) :=
universallyClosed_stableUnderBaseChange.fst f g hg
Expand All @@ -83,9 +93,7 @@ theorem morphismRestrict_base {X Y : Scheme} (f : X ⟶ Y) (U : Opens Y.carrier)
theorem universallyClosed_is_local_at_target : PropertyIsLocalAtTarget @UniversallyClosed := by
rw [universallyClosed_eq]
apply universallyIsLocalAtTargetOfMorphismRestrict
· exact StableUnderComposition.respectsIso (fun X Y Z f g hf hg =>
IsClosedMap.comp (f := f.1.base) (g := g.1.base) hg hf)
(fun f => (TopCat.homeoOfIso (Scheme.forgetToTop.mapIso f)).isClosedMap)
· exact topologically_isClosedMap_respectsIso
· intro X Y f ι U hU H
simp_rw [topologically, morphismRestrict_base] at H
exact (isClosedMap_iff_isClosedMap_of_iSup_eq_top hU).mpr H
Expand Down
14 changes: 6 additions & 8 deletions Mathlib/CategoryTheory/Localization/Construction.lean
Original file line number Diff line number Diff line change
Expand Up @@ -231,8 +231,8 @@ morphisms in the localized category if it contains the image of the
morphisms in the original category, the inverses of the morphisms
in `W` and if it is stable under composition -/
theorem morphismProperty_is_top (P : MorphismProperty W.Localization)
(hP₁ : ∀ ⦃X Y : C⦄ (f : X ⟶ Y), P (W.Q.map f))
(hP₂ : ∀ ⦃X Y : C⦄ (w : X ⟶ Y) (hw : W w), P (winv w hw)) (hP₃ : P.StableUnderComposition) :
[P.IsStableUnderComposition] (hP₁ : ∀ ⦃X Y : C⦄ (f : X ⟶ Y), P (W.Q.map f))
(hP₂ : ∀ ⦃X Y : C⦄ (w : X ⟶ Y) (hw : W w), P (winv w hw)) :
P = ⊤ := by
funext X Y f
ext
Expand All @@ -251,7 +251,7 @@ theorem morphismProperty_is_top (P : MorphismProperty W.Localization)
· simpa only [Functor.map_id] using hP₁ (𝟙 X₁.obj)
· let p' : X₁ ⟶X₂ := p
rw [show p'.cons g = p' ≫ Quiver.Hom.toPath g by rfl, G.map_comp]
refine' hP₃ _ _ hp _
refine' P.comp_mem _ _ hp _
rcases g with (g | ⟨g, hg⟩)
· apply hP₁
· apply hP₂
Expand All @@ -262,10 +262,9 @@ morphisms in the localized category if it contains the image of the
morphisms in the original category, if is stable under composition
and if the property is stable by passing to inverses. -/
theorem morphismProperty_is_top' (P : MorphismProperty W.Localization)
(hP₁ : ∀ ⦃X Y : C⦄ (f : X ⟶ Y), P (W.Q.map f))
(hP₂ : ∀ ⦃X Y : W.Localization⦄ (e : X ≅ Y) (_ : P e.hom), P e.inv)
(hP₃ : P.StableUnderComposition) : P = ⊤ :=
morphismProperty_is_top P hP₁ (fun _ _ w _ => hP₂ _ (hP₁ w)) hP₃
[P.IsStableUnderComposition] (hP₁ : ∀ ⦃X Y : C⦄ (f : X ⟶ Y), P (W.Q.map f))
(hP₂ : ∀ ⦃X Y : W.Localization⦄ (e : X ≅ Y) (_ : P e.hom), P e.inv) : P = ⊤ :=
morphismProperty_is_top P hP₁ (fun _ _ w _ => hP₂ _ (hP₁ w))
#align category_theory.localization.construction.morphism_property_is_top' CategoryTheory.Localization.Construction.morphismProperty_is_top'

namespace NatTransExtension
Expand Down Expand Up @@ -301,7 +300,6 @@ def natTransExtension {F₁ F₂ : W.Localization ⥤ D} (τ : W.Q ⋙ F₁ ⟶
refine' morphismProperty_is_top'
(MorphismProperty.naturalityProperty (NatTransExtension.app τ))
_ (MorphismProperty.naturalityProperty.stableUnderInverse _)
(MorphismProperty.naturalityProperty.stableUnderComposition _)
intros X Y f
dsimp
simpa only [NatTransExtension.app_eq] using τ.naturality f
Expand Down
4 changes: 4 additions & 0 deletions Mathlib/CategoryTheory/MorphismProperty/Basic.lean
Original file line number Diff line number Diff line change
Expand Up @@ -98,6 +98,10 @@ def inverseImage (P : MorphismProperty D) (F : C ⥤ D) : MorphismProperty C :=
P (F.map f)
#align category_theory.morphism_property.inverse_image CategoryTheory.MorphismProperty.inverseImage

@[simp]
lemma inverseImage_iff (P : MorphismProperty D) (F : C ⥤ D) {X Y : C} (f : X ⟶ Y) :
P.inverseImage F f ↔ P (F.map f) := by rfl

/-- The image (up to isomorphisms) of a `MorphismProperty C` by a functor `C ⥤ D` -/
def map (P : MorphismProperty C) (F : C ⥤ D) : MorphismProperty D := fun _ _ f =>
∃ (X' Y' : C) (f' : X' ⟶ Y') (_ : P f'), Nonempty (Arrow.mk (F.map f') ≅ Arrow.mk f)
Expand Down
Loading
Loading