Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[Merged by Bors] - feat: port LinearAlgebra.DirectSum.Finsupp #3205

Closed
wants to merge 5 commits into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions Mathlib.lean
Original file line number Diff line number Diff line change
Expand Up @@ -1183,6 +1183,7 @@ import Mathlib.LinearAlgebra.Basis
import Mathlib.LinearAlgebra.Basis.Bilinear
import Mathlib.LinearAlgebra.BilinearMap
import Mathlib.LinearAlgebra.Dfinsupp
import Mathlib.LinearAlgebra.DirectSum.Finsupp
import Mathlib.LinearAlgebra.DirectSum.TensorProduct
import Mathlib.LinearAlgebra.Finsupp
import Mathlib.LinearAlgebra.GeneralLinearGroup
Expand Down
111 changes: 111 additions & 0 deletions Mathlib/LinearAlgebra/DirectSum/Finsupp.lean
Original file line number Diff line number Diff line change
@@ -0,0 +1,111 @@
/-
Copyright (c) 2019 Johannes Hölzl. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Johannes Hölzl

! This file was ported from Lean 3 source module linear_algebra.direct_sum.finsupp
! leanprover-community/mathlib commit 9b9d125b7be0930f564a68f1d73ace10cf46064d
! Please do not edit these lines, except to modify the commit id
! if you have ported upstream changes.
-/
import Mathlib.Algebra.DirectSum.Finsupp
import Mathlib.LinearAlgebra.Finsupp
import Mathlib.LinearAlgebra.DirectSum.TensorProduct

/-!
# Results on finitely supported functions.

The tensor product of `ι →₀ M` and `κ →₀ N` is linearly equivalent to `(ι × κ) →₀ (M ⊗ N)`.
-/


universe u v w

noncomputable section

open DirectSum

open Set LinearMap Submodule

variable {R : Type u} {M : Type v} {N : Type w} [Ring R] [AddCommGroup M] [Module R M]
[AddCommGroup N] [Module R N]

section TensorProduct

open TensorProduct

open TensorProduct Classical

set_option synthInstance.etaExperiment true -- Porting note: gets around lean4#2074

/-- The tensor product of `ι →₀ M` and `κ →₀ N` is linearly equivalent to `(ι × κ) →₀ (M ⊗ N)`. -/
def finsuppTensorFinsupp (R M N ι κ : Sort _) [CommRing R] [AddCommGroup M] [Module R M]
[AddCommGroup N] [Module R N] : (ι →₀ M) ⊗[R] (κ →₀ N) ≃ₗ[R] ι × κ →₀ M ⊗[R] N :=
TensorProduct.congr (finsuppLEquivDirectSum R M ι) (finsuppLEquivDirectSum R N κ) ≪≫ₗ
((TensorProduct.directSum R (fun _ : ι => M) fun _ : κ => N) ≪≫ₗ
(finsuppLEquivDirectSum R (M ⊗[R] N) (ι × κ)).symm)
#align finsupp_tensor_finsupp finsuppTensorFinsupp

@[simp]
theorem finsuppTensorFinsupp_single (R M N ι κ : Sort _) [CommRing R] [AddCommGroup M] [Module R M]
[AddCommGroup N] [Module R N] (i : ι) (m : M) (k : κ) (n : N) :
finsuppTensorFinsupp R M N ι κ (Finsupp.single i m ⊗ₜ Finsupp.single k n) =
Finsupp.single (i, k) (m ⊗ₜ n) :=
by simp [finsuppTensorFinsupp]
#align finsupp_tensor_finsupp_single finsuppTensorFinsupp_single

@[simp]
theorem finsuppTensorFinsupp_apply (R M N ι κ : Sort _) [CommRing R] [AddCommGroup M] [Module R M]
[AddCommGroup N] [Module R N] (f : ι →₀ M) (g : κ →₀ N) (i : ι) (k : κ) :
finsuppTensorFinsupp R M N ι κ (f ⊗ₜ g) (i, k) = f i ⊗ₜ g k := by
apply Finsupp.induction_linear f
· simp
· intro f₁ f₂ hf₁ hf₂
simp [add_tmul, hf₁, hf₂]
· intro i' m
apply Finsupp.induction_linear g
· simp
· intro g₁ g₂ hg₁ hg₂
simp [tmul_add, hg₁, hg₂]
· intro k' n
simp only [finsuppTensorFinsupp_single]
simp only [Finsupp.single_apply]
-- split_ifs; finish can close the goal from here
by_cases h1 : (i', k') = (i, k)
· simp only [Prod.mk.inj_iff] at h1
simp [h1]
· simp only [h1, if_false]
simp only [Prod.mk.inj_iff, not_and_or] at h1
cases' h1 with h1 h1 <;> simp [h1]
#align finsupp_tensor_finsupp_apply finsuppTensorFinsupp_apply

@[simp]
theorem finsuppTensorFinsupp_symm_single (R M N ι κ : Sort _) [CommRing R] [AddCommGroup M]
[Module R M] [AddCommGroup N] [Module R N] (i : ι × κ) (m : M) (n : N) :
(finsuppTensorFinsupp R M N ι κ).symm (Finsupp.single i (m ⊗ₜ n)) =
Finsupp.single i.1 m ⊗ₜ Finsupp.single i.2 n :=
Prod.casesOn i fun _ _ =>
(LinearEquiv.symm_apply_eq _).2 (finsuppTensorFinsupp_single _ _ _ _ _ _ _ _ _).symm
#align finsupp_tensor_finsupp_symm_single finsuppTensorFinsupp_symm_single

variable (S : Type _) [CommRing S] (α β : Type _)

/-- A variant of `finsuppTensorFinsupp` where both modules are the ground ring. -/
def finsuppTensorFinsupp' : (α →₀ S) ⊗[S] (β →₀ S) ≃ₗ[S] α × β →₀ S :=
(finsuppTensorFinsupp S S S α β).trans (Finsupp.lcongr (Equiv.refl _) (TensorProduct.lid S S))
#align finsupp_tensor_finsupp' finsuppTensorFinsupp'

@[simp]
theorem finsuppTensorFinsupp'_apply_apply (f : α →₀ S) (g : β →₀ S) (a : α) (b : β) :
finsuppTensorFinsupp' S α β (f ⊗ₜ[S] g) (a, b) = f a * g b := by simp [finsuppTensorFinsupp']
#align finsupp_tensor_finsupp'_apply_apply finsuppTensorFinsupp'_apply_apply

@[simp]
theorem finsuppTensorFinsupp'_single_tmul_single (a : α) (b : β) (r₁ r₂ : S) :
finsuppTensorFinsupp' S α β (Finsupp.single a r₁ ⊗ₜ[S] Finsupp.single b r₂) =
Finsupp.single (a, b) (r₁ * r₂) := by
ext ⟨a', b'⟩
aesop (add norm [Finsupp.single_apply])
#align finsupp_tensor_finsupp'_single_tmul_single finsuppTensorFinsupp'_single_tmul_single

end TensorProduct