Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 3 additions & 1 deletion README.md
Original file line number Diff line number Diff line change
Expand Up @@ -81,7 +81,9 @@ API and command-line option may change frequently.***
- [`DPM++ 2M v2`](https://github.com/AUTOMATIC1111/stable-diffusion-webui/discussions/8457)
- `DPM++ 2S a`
- [`LCM`](https://github.com/AUTOMATIC1111/stable-diffusion-webui/issues/13952)
- Cross-platform reproducibility (`--rng cuda`, consistent with the `stable-diffusion-webui GPU RNG`)
- Cross-platform reproducibility
- `--rng cuda`, default, consistent with the `stable-diffusion-webui GPU RNG`
- `--rng cpu`, consistent with the `comfyui RNG`
- Embedds generation parameters into png output as webui-compatible text string

## Quick Start
Expand Down
2 changes: 1 addition & 1 deletion examples/cli/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -94,7 +94,7 @@ Options:
-M, --mode run mode, one of [img_gen, vid_gen, upscale, convert], default: img_gen
--type weight type (examples: f32, f16, q4_0, q4_1, q5_0, q5_1, q8_0, q2_K, q3_K, q4_K). If not specified, the default is the
type of the weight file
--rng RNG, one of [std_default, cuda], default: cuda
--rng RNG, one of [std_default, cuda, cpu], default: cuda(sd-webui), cpu(comfyui)
-s, --seed RNG seed (default: 42, use random seed for < 0)
--sampling-method sampling method, one of [euler, euler_a, heun, dpm2, dpm++2s_a, dpm++2m, dpm++2mv2, ipndm, ipndm_v, lcm, ddim_trailing,
tcd] (default: euler for Flux/SD3/Wan, euler_a otherwise)
Expand Down
2 changes: 1 addition & 1 deletion examples/cli/main.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -1124,7 +1124,7 @@ void parse_args(int argc, const char** argv, SDParams& params) {
on_type_arg},
{"",
"--rng",
"RNG, one of [std_default, cuda], default: cuda",
"RNG, one of [std_default, cuda, cpu], default: cuda(sd-webui), cpu(comfyui)",
on_rng_arg},
{"-s",
"--seed",
Expand Down
147 changes: 147 additions & 0 deletions rng_mt19937.hpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,147 @@
#ifndef __RNG_MT19937_HPP__
#define __RNG_MT19937_HPP__

#include <cmath>
#include <vector>

#include "rng.hpp"

// RNG imitiating torch cpu randn on CPU.
// Port from pytorch, original license: https://github.com/pytorch/pytorch/blob/d01a7b0241ed1c4cded7e7ca097249feb343f072/LICENSE
// Ref: https://github.com/pytorch/pytorch/blob/d01a7b0241ed1c4cded7e7ca097249feb343f072/aten/src/ATen/core/TransformationHelper.h, for uniform_real
// Ref: https://github.com/pytorch/pytorch/blob/d01a7b0241ed1c4cded7e7ca097249feb343f072/aten/src/ATen/native/cpu/DistributionTemplates.h, for normal_kernel/normal_fill/normal_fill_16
// Ref: https://github.com/pytorch/pytorch/blob/d01a7b0241ed1c4cded7e7ca097249feb343f072/aten/src/ATen/core/MT19937RNGEngine.h, for mt19937_engine
// Ref: https://github.com/pytorch/pytorch/blob/d01a7b0241ed1c4cded7e7ca097249feb343f072/aten/src/ATen/core/DistributionsHelper.h, for uniform_real_distribution/normal_distribution
class MT19937RNG : public RNG {
static const int N = 624;
static const int M = 397;
static const uint32_t MATRIX_A = 0x9908b0dfU;
static const uint32_t UMASK = 0x80000000U;
static const uint32_t LMASK = 0x7fffffffU;

struct State {
uint64_t seed_;
int left_;
bool seeded_;
uint32_t next_;
std::array<uint32_t, N> state_;
bool has_next_gauss = false;
double next_gauss = 0.0f;
};

State s;

uint32_t mix_bits(uint32_t u, uint32_t v) { return (u & UMASK) | (v & LMASK); }
uint32_t twist(uint32_t u, uint32_t v) { return (mix_bits(u, v) >> 1) ^ ((v & 1) ? MATRIX_A : 0); }
void next_state() {
uint32_t* p = s.state_.data();
s.left_ = N;
s.next_ = 0;
for (int j = N - M + 1; --j; p++)
p[0] = p[M] ^ twist(p[0], p[1]);
for (int j = M; --j; p++)
p[0] = p[M - N] ^ twist(p[0], p[1]);
p[0] = p[M - N] ^ twist(p[0], s.state_[0]);
}

uint32_t rand_uint32() {
if (--s.left_ == 0)
next_state();
uint32_t y = s.state_[s.next_++];
y ^= (y >> 11);
y ^= (y << 7) & 0x9d2c5680U;
y ^= (y << 15) & 0xefc60000U;
y ^= (y >> 18);
return y;
}

uint64_t rand_uint64() {
uint64_t high = (uint64_t)rand_uint32();
uint64_t low = (uint64_t)rand_uint32();
return (high << 32) | low;
}

template <typename T, typename V>
T uniform_real(V val, T from, T to) {
constexpr auto MASK = static_cast<V>((static_cast<uint64_t>(1) << std::numeric_limits<T>::digits) - 1);
constexpr auto DIVISOR = static_cast<T>(1) / (static_cast<uint64_t>(1) << std::numeric_limits<T>::digits);
T x = (val & MASK) * DIVISOR;
return (x * (to - from) + from);
}

double normal_double_value(double mean, double std) {
if (s.has_next_gauss) {
s.has_next_gauss = false;
return s.next_gauss;
}
double u1 = uniform_real(rand_uint64(), 0., 1.); // double
double u2 = uniform_real(rand_uint64(), 0., 1.); // double

double r = std::sqrt(-2.0 * std::log1p(-u2));
double theta = 2.0 * 3.14159265358979323846 * u1;
double value = r * std::cos(theta) * std + mean;
s.next_gauss = r * std::sin(theta) * std + mean;
s.has_next_gauss = true;
return value;
}

void normal_fill_16(float* data, float mean, float std) {
for (int j = 0; j < 8; ++j) {
float u1 = 1.0f - data[j];
float u2 = data[j + 8];
float r = std::sqrt(-2.0f * std::log(u1));
float theta = 2.0f * 3.14159265358979323846 * u2;
data[j] = r * std::cos(theta) * std + mean;
data[j + 8] = r * std::sin(theta) * std + mean;
}
}

void randn(float* data, int64_t size, float mean = 0.0f, float std = 1.0f) {
if (size >= 16) {
for (int64_t i = 0; i < size; i++) {
data[i] = uniform_real(rand_uint32(), 0.f, 1.f);
}
for (int64_t i = 0; i < size - 15; i += 16) {
normal_fill_16(data + i, mean, std);
}
if (size % 16 != 0) {
// Recompute the last 16 values.
data = data + size - 16;
for (int64_t i = 0; i < 16; i++) {
data[i] = uniform_real(rand_uint32(), 0.f, 1.f);
}
normal_fill_16(data, mean, std);
}
} else {
// Strange handling, hard to understand, but keeping it consistent with PyTorch.
for (int64_t i = 0; i < size; i++) {
data[i] = (float)normal_double_value(mean, std);
}
}
}

public:
MT19937RNG(uint64_t seed = 0) { manual_seed(seed); }

void manual_seed(uint64_t seed) override {
s.seed_ = seed;
s.seeded_ = true;
s.state_[0] = (uint32_t)(seed & 0xffffffffU);
for (int j = 1; j < N; j++) {
uint32_t prev = s.state_[j - 1];
s.state_[j] = 1812433253U * (prev ^ (prev >> 30)) + j;
}
s.left_ = 1;
s.next_ = 0;
s.has_next_gauss = false;
}

std::vector<float> randn(uint32_t n) override {
std::vector<float> out;
out.resize(n);
randn((float*)out.data(), out.size());
return out;
}
};

#endif // __RNG_MT19937_HPP__
4 changes: 4 additions & 0 deletions stable-diffusion.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -2,6 +2,7 @@

#include "model.h"
#include "rng.hpp"
#include "rng_mt19937.hpp"
#include "rng_philox.hpp"
#include "stable-diffusion.h"
#include "util.h"
Expand Down Expand Up @@ -200,6 +201,8 @@ class StableDiffusionGGML {
rng = std::make_shared<STDDefaultRNG>();
} else if (sd_ctx_params->rng_type == CUDA_RNG) {
rng = std::make_shared<PhiloxRNG>();
} else if (sd_ctx_params->rng_type == CPU_RNG) {
rng = std::make_shared<MT19937RNG>();
}

ggml_log_set(ggml_log_callback_default, nullptr);
Expand Down Expand Up @@ -2127,6 +2130,7 @@ enum sd_type_t str_to_sd_type(const char* str) {
const char* rng_type_to_str[] = {
"std_default",
"cuda",
"cpu",
};

const char* sd_rng_type_name(enum rng_type_t rng_type) {
Expand Down
1 change: 1 addition & 0 deletions stable-diffusion.h
Original file line number Diff line number Diff line change
Expand Up @@ -31,6 +31,7 @@ extern "C" {
enum rng_type_t {
STD_DEFAULT_RNG,
CUDA_RNG,
CPU_RNG,
RNG_TYPE_COUNT
};

Expand Down
Loading