Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 4 additions & 4 deletions mlir/lib/Dialect/Linalg/Transforms/Vectorization.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -746,12 +746,12 @@ static Value buildVectorWrite(RewriterBase &rewriter, Value value,
auto vectorType = state.getCanonicalVecType(
getElementTypeOrSelf(outputOperand->get().getType()), vectorTypeMap);

SmallVector<Value> indices(linalgOp.getRank(outputOperand),
arith::ConstantIndexOp::create(rewriter, loc, 0));

Operation *write;
if (vectorType.getRank() > 0) {
AffineMap writeMap = inversePermutation(reindexIndexingMap(opOperandMap));
SmallVector<Value> indices(
linalgOp.getRank(outputOperand),
arith::ConstantIndexOp::create(rewriter, loc, 0));
value = broadcastIfNeeded(rewriter, value, vectorType);
assert(value.getType() == vectorType && "Incorrect type");
write = vector::TransferWriteOp::create(
Expand All @@ -762,7 +762,7 @@ static Value buildVectorWrite(RewriterBase &rewriter, Value value,
value = vector::BroadcastOp::create(rewriter, loc, vectorType, value);
assert(value.getType() == vectorType && "Incorrect type");
write = vector::TransferWriteOp::create(rewriter, loc, value,
outputOperand->get(), ValueRange{});
outputOperand->get(), indices);
}

write = state.maskOperation(rewriter, write, linalgOp, opOperandMap);
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -1481,23 +1481,23 @@ module attributes {transform.with_named_sequence} {

// -----

// CHECK-LABEL: func @reduce_1d(
// CHECK-SAME: %[[A:.*]]: tensor<32xf32>
func.func @reduce_1d(%arg0: tensor<32xf32>) -> tensor<f32> {
// CHECK-LABEL: func @reduce_to_rank_0(
// CHECK-SAME: %[[SRC:.*]]: tensor<32xf32>
func.func @reduce_to_rank_0(%arg0: tensor<32xf32>) -> tensor<f32> {
// CHECK-DAG: %[[F0:.*]] = arith.constant 0.000000e+00 : f32
// CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index
%f0 = arith.constant 0.000000e+00 : f32

// CHECK: %[[init:.*]] = tensor.empty() : tensor<f32>
// CHECK: %[[INIT:.*]] = tensor.empty() : tensor<f32>
%0 = tensor.empty() : tensor<f32>

%1 = linalg.fill ins(%f0 : f32) outs(%0 : tensor<f32>) -> tensor<f32>
// CHECK: %[[r:.*]] = vector.transfer_read %[[A]][%[[C0]]]
// CHECK: %[[R:.*]] = vector.transfer_read %[[SRC]][%[[C0]]]
// CHECK-SAME: : tensor<32xf32>, vector<32xf32>
// CHECK: %[[red:.*]] = vector.multi_reduction <add>, %[[r]], %[[F0]] [0]
// CHECK: %[[RED:.*]] = vector.multi_reduction <add>, %[[R]], %[[F0]] [0]
// CHECK-SAME: : vector<32xf32> to f32
// CHECK: %[[red_v1:.*]] = vector.broadcast %[[red]] : f32 to vector<f32>
// CHECK: %[[res:.*]] = vector.transfer_write %[[red_v1]], %[[init]][]
// CHECK: %[[RED_V1:.*]] = vector.broadcast %[[RED]] : f32 to vector<f32>
// CHECK: %[[RES:.*]] = vector.transfer_write %[[RED_V1]], %[[INIT]][]
// CHECK-SAME: : vector<f32>, tensor<f32>
%2 = linalg.generic {
indexing_maps = [affine_map<(d0) -> (d0)>,
Expand All @@ -1523,6 +1523,58 @@ module attributes {transform.with_named_sequence} {
}


// -----

// CHECK-LABEL: func @reduce_to_rank_1(
// CHECK-SAME: %[[SRC:.*]]: tensor<32xf32>
func.func @reduce_to_rank_1(%arg0: tensor<32xf32>) -> tensor<1xf32> {
// CHECK-DAG: %[[C0:.*]] = arith.constant 0 : index
// CHECK-DAG: %[[F0:.*]] = arith.constant dense<0.000000e+00> : vector<1xf32>
%f0 = arith.constant 0.000000e+00 : f32

// CHECK: %[[INIT:.*]] = tensor.empty() : tensor<1xf32>
%0 = tensor.empty() : tensor<1xf32>

// CHECK: %[[INIT_ZERO:.*]] = vector.transfer_write %[[F0]], %[[INIT]][%[[C0]]]
// CHECK-SAME: : vector<1xf32>, tensor<1xf32>
%1 = linalg.fill ins(%f0 : f32) outs(%0 : tensor<1xf32>) -> tensor<1xf32>

// CHECK: %[[R:.*]] = vector.transfer_read %[[SRC]][%[[C0]]]
// CHECK-SAME: : tensor<32xf32>, vector<32xf32>
// CHECK: %[[INIT_ZERO_VEC:.*]] = vector.transfer_read %[[INIT_ZERO]][%[[C0]]]
// CHECK-SAME: : tensor<1xf32>, vector<f32>
// CHECK: %[[INIT_ZERO_SCL:.*]] = vector.extract %[[INIT_ZERO_VEC]][]
// CHECK-SAME: : f32 from vector<f32>
// CHECK: %[[RED:.*]] = vector.multi_reduction <add>, %[[R]], %[[INIT_ZERO_SCL]] [0]
// CHECK-SAME: : vector<32xf32> to f32
// CHECK: %[[RED_V1:.*]] = vector.broadcast %[[RED]] : f32 to vector<f32>
// CHECK: vector.transfer_write %[[RED_V1]], %[[INIT_ZERO]][%[[C0]]]
// CHECK-SAME: : vector<f32>, tensor<1xf32>

%2 = linalg.generic {
indexing_maps = [affine_map<(d0) -> (d0)>,
affine_map<(d0) -> (0)>],
iterator_types = ["reduction"]}
ins(%arg0 : tensor<32xf32>)
outs(%1 : tensor<1xf32>) {
^bb0(%a: f32, %b: f32):
%3 = arith.addf %a, %b : f32
linalg.yield %3 : f32
} -> tensor<1xf32>

return %2 : tensor<1xf32>
}

module attributes {transform.with_named_sequence} {
transform.named_sequence @__transform_main(%arg1: !transform.any_op {transform.readonly}) {
%0 = transform.structured.match ops{["linalg.generic"]} in %arg1 : (!transform.any_op) -> !transform.any_op
%1 = transform.get_parent_op %0 {isolated_from_above} : (!transform.any_op) -> !transform.any_op
%2 = transform.structured.vectorize_children_and_apply_patterns %1 : (!transform.any_op) -> !transform.any_op
transform.yield
}
}


// -----

// This test checks that vectorization does not occur when an input indexing map
Expand Down
Loading