Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions e2e_testing/xfail_sets.py
Original file line number Diff line number Diff line change
Expand Up @@ -455,6 +455,7 @@
"ArgmaxModule_keepDim",
"ArgmaxModule_with_dim",
"_LogSoftmaxModuleStable_basic",
"ElementwiseAtenWhereSelfModule_basic",
"LiftFreshCopyModule_basic",
"ReduceSumDimIntListKeepDimNegativeDimStaticModule_basic",
"ReduceSumDimIntListFloatModule_basic",
Expand Down
25 changes: 25 additions & 0 deletions lib/Conversion/TorchToTosa/TorchToTosa.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -3004,6 +3004,30 @@ LogicalResult ConvertAtenOp<AtenBroadcastToOp>::matchAndRewrite(
"unimplemented: broadcasts other than same rank or zero ranked tensor.");
}


template <>
LogicalResult ConvertAtenOp<AtenWhereSelfOp>::matchAndRewrite(
AtenWhereSelfOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const {

// Not a tensor type.
auto selfType = adaptor.self().getType().dyn_cast<TensorType>();
if (!selfType)
return rewriter.notifyMatchFailure(
op, "Only tensor types input are currently supported");
auto condType = adaptor.condition().getType().dyn_cast<TensorType>();
if (!condType)
return rewriter.notifyMatchFailure(
op, "Only tensor types condition are currently supported");

auto outType = getTypeConverter()->convertType(op.getType());
rewriter.replaceOpWithNewOp<tosa::SelectOp>(op, outType, adaptor.condition(),
adaptor.self(), adaptor.other());

return success();
}


template <>
LogicalResult ConvertAtenOp<AtenArangeStartStepOp>::matchAndRewrite(
AtenArangeStartStepOp op, OpAdaptor adaptor,
Expand Down Expand Up @@ -3829,6 +3853,7 @@ class ConvertTorchToTosa : public ConvertTorchToTosaBase<ConvertTorchToTosa> {
INSERT_ATENOP_PATTERN(AtenMaxDimOp);
INSERT_ATENOP_PATTERN(AtenSliceTensorOp);
INSERT_ATENOP_PATTERN(AtenBroadcastToOp);
INSERT_ATENOP_PATTERN(AtenWhereSelfOp);
INSERT_ATENOP_PATTERN(AtenArangeStartStepOp);
INSERT_ATENOP_PATTERN(PrimNumToTensorScalarOp);
INSERT_ATENOP_PATTERN(ValsemVariantAtenCopyOp);
Expand Down
24 changes: 24 additions & 0 deletions python/torch_mlir_e2e_test/test_suite/elementwise.py
Original file line number Diff line number Diff line change
Expand Up @@ -134,6 +134,30 @@ def ElementwiseTernaryModule_basic(module, tu: TestUtils):
# ==============================================================================


class ElementwiseAtenWhereSelfModule(torch.nn.Module):

def __init__(self):
super().__init__()

@export
@annotate_args([
None,
([1, 1, 5, 5], torch.bool, True),
([1, 12, 5, 5], torch.float32, True),
([], torch.float32, True),
])
def forward(self, a, b, c):
return torch.ops.aten.where(a, b, c)


@register_test_case(module_factory=lambda: ElementwiseAtenWhereSelfModule())
def ElementwiseAtenWhereSelfModule_basic(module, tu: TestUtils):
module.forward(torch.zeros(1, 1, 5, 5, dtype=torch.bool), torch.rand(1, 12, 5, 5), torch.rand(()))


# ==============================================================================


class ElementwiseWhereSelfModule(torch.nn.Module):

def __init__(self):
Expand Down
17 changes: 17 additions & 0 deletions test/Conversion/TorchToTosa/basic.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -913,3 +913,20 @@ func.func @torch.aten.to.dtype(%arg0: !torch.vtensor<[3,5],si64>) -> !torch.vten
%0 = torch.aten.to.dtype %arg0, %int11, %false, %false, %none : !torch.vtensor<[3,5],si64>, !torch.int, !torch.bool, !torch.bool, !torch.none -> !torch.vtensor<[3,5],i1>
return %0 : !torch.vtensor<[3,5],i1>
}

// -----
// CHECK-LABEL: func.func @torch.aten.where.self(
// CHECK-SAME: %[[VAL_0:.*]]: !torch.vtensor<[1,1,5,5],i1>,
// CHECK-SAME: %[[VAL_1:.*]]: !torch.vtensor<[1,12,5,5],f32>,
// CHECK-SAME: %[[VAL_2:.*]]: !torch.vtensor<[],f32>) -> !torch.vtensor<[1,12,5,5],f32> {
// CHECK: %[[VAL_3:.*]] = torch_c.to_builtin_tensor %[[VAL_0]] : !torch.vtensor<[1,1,5,5],i1> -> tensor<1x1x5x5xi1>
// CHECK: %[[VAL_4:.*]] = torch_c.to_builtin_tensor %[[VAL_1]] : !torch.vtensor<[1,12,5,5],f32> -> tensor<1x12x5x5xf32>
// CHECK: %[[VAL_5:.*]] = torch_c.to_builtin_tensor %[[VAL_2]] : !torch.vtensor<[],f32> -> tensor<f32>
// CHECK: %[[VAL_6:.*]] = "tosa.select"(%[[VAL_3]], %[[VAL_4]], %[[VAL_5]]) : (tensor<1x1x5x5xi1>, tensor<1x12x5x5xf32>, tensor<f32>) -> tensor<1x12x5x5xf32>
// CHECK: %[[VAL_7:.*]] = torch_c.from_builtin_tensor %[[VAL_6]] : tensor<1x12x5x5xf32> -> !torch.vtensor<[1,12,5,5],f32>
// CHECK: return %[[VAL_7]] : !torch.vtensor<[1,12,5,5],f32>
// CHECK: }
func.func @torch.aten.where.self(%arg0: !torch.vtensor<[1,1,5,5],i1>, %arg1: !torch.vtensor<[1,12,5,5],f32>, %arg2: !torch.vtensor<[],f32>) -> !torch.vtensor<[1,12,5,5],f32> {
%0 = torch.aten.where.self %arg0, %arg1, %arg2 : !torch.vtensor<[1,1,5,5],i1>, !torch.vtensor<[1,12,5,5],f32>, !torch.vtensor<[],f32> -> !torch.vtensor<[1,12,5,5],f32>
return %0 : !torch.vtensor<[1,12,5,5],f32>
}