Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
248 changes: 248 additions & 0 deletions integrations/langchain/news-search-langchain.ipynb
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

There are some typos.

typo

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

It's better to use get_feature_group instead of get_or_create_feature_group.

# `news_fg.embedding_index.index_name` return the index name
news_fg = fs.get_feature_group(
    name="news_fg",
    version=1,
)
fg

Original file line number Diff line number Diff line change
@@ -0,0 +1,248 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "685e5fb7",
"metadata": {},
"source": [
"# News search using Hopsworks and Langchain"
]
},
{
"cell_type": "markdown",
"id": "541a9ee1",
"metadata": {},
"source": [
"In this tutorial, you will learn how to create a news search bot which can answer users' question about news using Opensearch in Hopsworks with Langchain. Concretely, you will create a RAG (Retrieval-Augmented Generation) application which searches news matching users' questions, and answers the question using a LLM with the retrieved news as the context.\n",
"The steps include:\n",
"1. [Ingest news data to Hopsworks](https://github.com/logicalclocks/hopsworks-tutorials/blob/master/api_examples/hsfs/knn_search/news-search-knn.ipynb)\n",
"2. Setup a `vectorstores` in Langchain using Opensearch in Hopsworks\n",
"3. Create a LLM using model from huggingface\n",
"4. Create a RAG application using `RetrievalQA` chain in Langchain"
]
},
{
"cell_type": "markdown",
"id": "014fe398-8337-44d7-a71a-334b884d5ebf",
"metadata": {},
"source": [
"## Prerequisite"
]
},
{
"cell_type": "markdown",
"id": "ba83a905-3944-4bf1-b4d7-43d4336f0beb",
"metadata": {},
"source": [
"You need to run this [notebook](https://github.com/logicalclocks/hopsworks-tutorials/blob/master/api_examples/hsfs/knn_search/news-search-knn.ipynb) to ingest news data to Hopsworks."
]
},
{
"cell_type": "markdown",
"id": "b4621965",
"metadata": {},
"source": [
"## Setup a vector store in Langchain using Opensearch in Hopsworks"
]
},
{
"cell_type": "markdown",
"id": "5c55b995",
"metadata": {},
"source": [
"First, you need to get the opensearch configuration, and the index name in the vector store from Hopsworks."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "942caffc",
"metadata": {},
"outputs": [],
"source": [
"import hopsworks\n",
"from hsfs.core.opensearch_api import OpenSearchApi\n",
"proj = hopsworks.login()\n",
"fs = proj.get_feature_store()\n",
"\n",
"opensearch_config = OpenSearchApi(project_id=proj.id, project_name=proj.name).get_default_py_config()\n",
"opensearch_config[\"opensearch_url\"] = f'{opensearch_config[\"hosts\"][0][\"host\"]}:{opensearch_config[\"hosts\"][0][\"port\"]}'\n",
"opensearch_config.pop(\"hosts\")\n",
"\n",
"# `news_fg.embedding_index.index_name` return the index name\n",
"news_fg = fs.get_feature_group(\n",
" name=\"news_fg\",\n",
" version=1,\n",
")"
]
},
{
"cell_type": "markdown",
"id": "5cf29f55",
"metadata": {},
"source": [
"Then, you can setup the vector store in Langchain using the configuration, and the embedding model used for generating the embedding in the feature group."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "efd8c222",
"metadata": {},
"outputs": [],
"source": [
"from langchain_community.vectorstores import OpenSearchVectorSearch\n",
"from langchain.embeddings import SentenceTransformerEmbeddings\n",
"\n",
"embeddings = SentenceTransformerEmbeddings(model_name=\"all-MiniLM-L6-v2\")\n",
"\n",
"docsearch = OpenSearchVectorSearch(\n",
" index_name=news_fg.embedding_index.index_name,\n",
" embedding_function=embeddings,\n",
" **opensearch_config\n",
")\n"
]
},
{
"cell_type": "markdown",
"id": "40fd60d5",
"metadata": {},
"source": [
"## Create a LLM using model from huggingface"
]
},
{
"cell_type": "markdown",
"id": "b7016353",
"metadata": {},
"source": [
"You need to load a llm model from huggingface. You can pick any model on huggingface. To accelerate the inference, you can use load the model to gpu if available."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "401e21c4",
"metadata": {},
"outputs": [],
"source": [
"from langchain.llms import HuggingFacePipeline\n",
"from transformers import AutoModelForCausalLM, AutoTokenizer, pipeline\n",
"import torch\n",
"\n",
"import torch\n",
"# Check for GPU availability and set device\n",
"if torch.cuda.is_available():\n",
" device = torch.device(\"cuda\")\n",
" print(\"GPU is available!\")\n",
"else:\n",
" device = torch.device(\"cpu\")\n",
" print(\"GPU is not available, using CPU.\")\n",
"\n",
" \n",
"# Load the Llama2 chat model (replace with your preferred model name)\n",
"model_name = \"TinyLlama/TinyLlama-1.1B-Chat-v1.0\" \n",
"tokenizer = AutoTokenizer.from_pretrained(model_name)\n",
"model = AutoModelForCausalLM.from_pretrained(model_name).to(device)\n",
"pipe = pipeline(\"text-generation\", model=model, tokenizer=tokenizer, torch_dtype=torch.bfloat16, device=device)\n",
"llm = HuggingFacePipeline(pipeline=pipe)"
]
},
{
"cell_type": "markdown",
"id": "c4da0be7",
"metadata": {},
"source": [
"# Create a RAG application using `RetrievalQA` chain in Langchain"
]
},
{
"cell_type": "markdown",
"id": "dabfbf85",
"metadata": {},
"source": [
"Lastly, you need to create a prompt for the llm, and create a `RetrievalQA` chain in Langchain. You need to provide `vector_field`, and `text_field` which are feature names in the `news_fg` feature group. You can also modify the number of results returned from the vector store by adjusting `k`."
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "3b902254",
"metadata": {},
"outputs": [],
"source": [
"from langchain import PromptTemplate\n",
"from langchain.chains import RetrievalQA\n",
"\n",
"# Prompt\n",
"template = \"\"\"\n",
"<|system|>\n",
"Use the following pieces of context to answer the question from user. \n",
"If you don't know the answer, just say that you don't know, don't try to make up an answer.\n",
"context:\n",
"{context} </s>\n",
"<|user|>\n",
"{question}</s>\n",
"<|assistant|>\n",
"\"\"\"\n",
"QA_CHAIN_PROMPT = PromptTemplate(\n",
" input_variables=[\"context\", \"question\"],\n",
" template=template,\n",
")\n",
"\n",
"qa_chain = RetrievalQA.from_chain_type(\n",
" llm,\n",
" retriever=docsearch.as_retriever(\n",
" search_kwargs={\n",
" \"vector_field\": news_fg.embedding_body.name, \n",
" \"text_field\": news_fg.article.name, \n",
" \"k\": 1}\n",
" ),\n",
" chain_type_kwargs={\"prompt\": QA_CHAIN_PROMPT},\n",
")\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "8b9f317f",
"metadata": {},
"outputs": [],
"source": [
"question = \"any news about France?\"\n",
"result = qa_chain({\"query\": question})\n",
"print(result[\"result\"])"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "828fc9cd",
"metadata": {},
"outputs": [],
"source": []
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.13"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
5 changes: 5 additions & 0 deletions integrations/langchain/requirements.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,5 @@
hsfs==3.7.0rc5
hopsworks==3.7.0rc1
sentence_transformers
torch
langchain