-
Notifications
You must be signed in to change notification settings - Fork 8
Closed
Description
Add a LightGBM model example with categorical variables.
Ex:
from lightgbm import LGBMClassifier
import pandas as pd
import joblib
df = pd.DataFrame({"feature1": [1.,1.,5.], "feature2": [2.,2.,5.], "feature3": ["B","B","A"]})
df['feature3'] = df['feature3'].astype('category')
model_path = './model.joblib'
model = LGBMClassifier()
model.fit(df, [0, 0, 1])
to_save = dict(model=model,
metadata={"features": [
{"name": "feature1", "type": "numeric"},
{"name": "feature2", "type": "numeric", "default": -1},
{"name": "feature3", "type": "category", "categories": ["A", "B"]}]})
with open(model_path, 'wb') as fo:
joblib.dump(to_save, fo)Add something like the following in the README
{
"model": trained_model,
"metadata": {"features": [
{"name": "feature1", "type": "numeric"},
{"name": "feature2", "type": "numeric", "default": -1},
{"name": "feature3", "type": "category", "categories": ["A", "B"]}]}
}Metadata
Metadata
Assignees
Labels
No labels