An extensible MCP server hosting multiple tools. Ships with retrieve_docs(query: string)
for RAG search
(OpenAI embeddings -> Pinecone), and a structure ready for future tools (e.g., code syntax checks).
Transports:
- STDIO for local development / desktop MCP clients.
- Streamable HTTP for production via Uvicorn (mounted at
/mcp
).
python -m venv .venv && source .venv/bin/activate
pip install -r requirements.txt
export OPENAI_API_KEY=sk-... PINECONE_API_KEY=... PINECONE_INDEX=lsfusion PINECONE_NAMESPACE=""
# STDIO transport
python server.py stdio
# HTTP transport
python server.py http --host 0.0.0.0 --port 8000
mcp install server.py
mcp dev server.py
Create a new module under tools/
and register it with @mcp.tool()
in server.py
(or build an auto-discovery
if you prefer). Keep tool signatures simple and JSON-serializable.
Returns an array of objects:
[
{ "source": "documentation-how-to", "text": "....", "score": 0.73 },
{ "source": "articles", "text": "....", "score": 0.69 }
]
Sorted by score
descending.
OPENAI_API_KEY
— OpenAI API keyPINECONE_API_KEY
— Pinecone API keyPINECONE_INDEX
— Pinecone index name (defaultlsfusion
)PINECONE_NAMESPACE
— Pinecone namespace (default empty)EMBEDDING_MODEL
— OpenAI embedding model (defaulttext-embedding-3-large
)
Build and run:
docker build -t lsfusion/mcp:latest .
docker run --rm -p 8000:8000 \
-e OPENAI_API_KEY=$OPENAI_API_KEY \
-e PINECONE_API_KEY=$PINECONE_API_KEY \
lsfusion/mcp:latest
Or via Compose:
docker compose up --build
Do not hardcode secrets. Options:
-
Kubernetes Secrets + external secret store
- Store secrets in AWS Secrets Manager / GCP Secret Manager / HashiCorp Vault.
- Sync into K8s as
Secret
via External Secrets Operator. - Mount as env vars in the Deployment:
env: - name: OPENAI_API_KEY valueFrom: { secretKeyRef: { name: mcp-secrets, key: openai } } - name: PINECONE_API_KEY valueFrom: { secretKeyRef: { name: mcp-secrets, key: pinecone } }
-
Docker Swarm / Compose secrets
- Use
secrets:
and mount files into the container, then export into env at entrypoint:services: mcp: image: lsfusion/mcp:latest secrets: [openai_key, pinecone_key] secrets: openai_key: { file: ./secrets/openai_key.txt } pinecone_key: { file: ./secrets/pinecone_key.txt }
- Read them in an entrypoint script:
export OPENAI_API_KEY="$(cat /run/secrets/openai_key)" export PINECONE_API_KEY="$(cat /run/secrets/pinecone_key)" exec python server.py http --host 0.0.0.0 --port 8000
- Use
-
Cloud run / App services (ECS, Cloud Run, App Service)
- Inject as environment variables wired to a managed secret store (e.g., AWS Parameter Store / Secrets Manager).
- Rotate periodically; grant least-privilege IAM.
-
CI/CD (GitHub Actions)
- Store in Actions Secrets.
- At build/deploy time pass them into the container as env vars or bake only into the runtime environment (never into the image).
This app reads credentials from environment variables, so your orchestrator should inject them from a secure store.
Prefer secret stores over committing .env
files.
- Run as non-root (done in Dockerfile).
- Keep logs to stdout/stderr; in STDIO mode, avoid extra prints (MCP uses stdio).
- Set request timeouts and retries in your MCP client / reverse proxy.
- Add health endpoint (optional) and readiness checks on
/mcp
handshake.
FastMCP reads host/port from environment variables:
MCP_HOST
(default:127.0.0.1
)MCP_PORT
(default:8000
)
Examples:
Local run
export OPENAI_API_KEY=sk-... PINECONE_API_KEY=...
export MCP_HOST=0.0.0.0 MCP_PORT=8000
python server.py http
Docker
docker run --rm -p 8000:8000 \ -e OPENAI_API_KEY=$OPENAI_API_KEY \ -e PINECONE_API_KEY=$PINECONE_API_KEY \ -e MCP_HOST=0.0.0.0 \ -e MCP_PORT=8000 \ ghcr.io/<org>/<repo>/lsfusion-mcp:latest