-
Notifications
You must be signed in to change notification settings - Fork 1
DM-53028: Add task to aggregate coadd inputs into a single summary table #162
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Changes from all commits
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,224 @@ | ||
| # This file is part of drp_tasks. | ||
| # | ||
| # Developed for the LSST Data Management System. | ||
| # This product includes software developed by the LSST Project | ||
| # (https://www.lsst.org). | ||
| # See the COPYRIGHT file at the top-level directory of this distribution | ||
| # for details of code ownership. | ||
| # | ||
| # This program is free software: you can redistribute it and/or modify | ||
| # it under the terms of the GNU General Public License as published by | ||
| # the Free Software Foundation, either version 3 of the License, or | ||
| # (at your option) any later version. | ||
| # | ||
| # This program is distributed in the hope that it will be useful, | ||
| # but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
| # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
| # GNU General Public License for more details. | ||
| # | ||
| # You should have received a copy of the GNU General Public License | ||
| # along with this program. If not, see <https://www.gnu.org/licenses/>. | ||
|
|
||
| __all__ = [ | ||
| "MakeCoaddInputSummaryTractConnections", | ||
| "MakeCoaddInputSummaryTractConfig", | ||
| "MakeCoaddInputSummaryTract", | ||
| "MakeCoaddInputSummaryConnections", | ||
| "MakeCoaddInputSummaryConfig", | ||
| "MakeCoaddInputSummary", | ||
| ] | ||
|
|
||
| import numpy as np | ||
| from astropy.table import Table | ||
|
|
||
| import lsst.pex.config | ||
| import lsst.pipe.base | ||
| from lsst.obs.base import TableVStack | ||
|
|
||
|
|
||
| class MakeCoaddInputSummaryTractConnections( | ||
| lsst.pipe.base.PipelineTaskConnections, | ||
| dimensions=("skymap", "tract", "band"), | ||
| ): | ||
| coadd_inputs_handles = lsst.pipe.base.connectionTypes.Input( | ||
| name="deep_coadd_predetection.coaddInputs", | ||
| doc="Coadd inputs.", | ||
| storageClass="CoaddInputs", | ||
| dimensions=("skymap", "tract", "patch", "band"), | ||
| deferLoad=True, | ||
| multiple=True, | ||
| ) | ||
| coadd_input_summary_tract = lsst.pipe.base.connectionTypes.Output( | ||
| name="coadd_input_summary_tract", | ||
| doc="Summary table aggregating coaddInputs from multiple coadds (including " | ||
| "all coaddInputs tables in a tract for a single band).", | ||
| storageClass="ArrowAstropy", | ||
| dimensions=("skymap", "tract", "band"), | ||
| ) | ||
|
|
||
|
|
||
| class MakeCoaddInputSummaryTractConfig( | ||
| lsst.pipe.base.PipelineTaskConfig, | ||
| pipelineConnections=MakeCoaddInputSummaryTractConnections, | ||
| ): | ||
| pass | ||
|
|
||
|
|
||
| class MakeCoaddInputSummaryTract(lsst.pipe.base.PipelineTask): | ||
| """Task to make coadd input summary by tract/band.""" | ||
|
|
||
| ConfigClass = MakeCoaddInputSummaryTractConfig | ||
| _DefaultName = "make_coadd_input_summary_tract" | ||
|
|
||
| def run(self, *, coadd_inputs_handles): | ||
| """Run the AggregateCoaddInputsTract task. | ||
|
|
||
| Parameters | ||
| ---------- | ||
| coadd_inputs : `list` [`lsst.daf.butler.DeferredDatasetHandle`] | ||
| List of coadd input handles to aggregate. | ||
|
|
||
| Returns | ||
| ------- | ||
| result : `lsst.pipe.base.Struct` | ||
| Result struct containing: | ||
| ``coadd_input_summary_tract`` : `astropy.table.Table` | ||
|
|
||
| Notes | ||
| ----- | ||
| The output table contains the the following columns: | ||
|
|
||
| tract : `int` | ||
| The tract number. | ||
| patch : `int` | ||
| The patch number. | ||
| visit : `int` | ||
| The visit number. | ||
| detector : `int` | ||
| The detector number. | ||
| weight : `float` | ||
| The weight that was used as an input to the coadd. | ||
| goodpix : `int` | ||
| The number of pixels from the visit/detector in the patch. | ||
| band : `str` | ||
| The band for the visit. | ||
| """ | ||
| self.log.info("Summarizing %d coadd input catalogs", len(coadd_inputs_handles)) | ||
| n_inputs = 0 | ||
| detector_table_dict = {} | ||
| bands = set() | ||
| for coadd_inputs_handle in coadd_inputs_handles: | ||
| data_id = coadd_inputs_handle.dataId | ||
| tract = data_id["tract"] | ||
| patch = data_id["patch"] | ||
| band = data_id["band"] | ||
|
|
||
| bands.add(band) | ||
|
|
||
| coadd_inputs = coadd_inputs_handle.get() | ||
|
|
||
| detector_table_dict[(tract, patch, band)] = coadd_inputs.ccds | ||
| n_inputs += len(coadd_inputs.ccds) | ||
|
|
||
| self.log.info("Found %d coadd input rows to summarize", n_inputs) | ||
|
|
||
| coadd_input_summary_tract = Table() | ||
| coadd_input_summary_tract["tract"] = np.zeros(n_inputs, dtype=np.int32) | ||
| coadd_input_summary_tract["patch"] = np.zeros(n_inputs, dtype=np.int32) | ||
| coadd_input_summary_tract["visit"] = np.zeros(n_inputs, dtype=np.int64) | ||
| coadd_input_summary_tract["detector"] = np.zeros(n_inputs, dtype=np.int32) | ||
| coadd_input_summary_tract["weight"] = np.zeros(n_inputs) | ||
| coadd_input_summary_tract["goodpix"] = np.zeros(n_inputs, dtype=np.int32) | ||
| coadd_input_summary_tract["band"] = np.zeros(n_inputs, dtype="U3") | ||
|
|
||
| counter = 0 | ||
| for (tract, patch, band), detectors in detector_table_dict.items(): | ||
| ndet = len(detectors) | ||
|
|
||
| coadd_input_summary_tract["tract"][counter : counter + ndet] = tract | ||
| coadd_input_summary_tract["patch"][counter : counter + ndet] = patch | ||
| coadd_input_summary_tract["band"][counter : counter + ndet] = band | ||
|
|
||
| coadd_input_summary_tract["visit"][counter : counter + ndet] = detectors["visit"] | ||
| coadd_input_summary_tract["detector"][counter : counter + ndet] = detectors["ccd"] | ||
| coadd_input_summary_tract["weight"][counter : counter + ndet] = detectors["weight"] | ||
| coadd_input_summary_tract["goodpix"][counter : counter + ndet] = detectors["goodpix"] | ||
|
Member
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Apologies for not volunteering to review earlier. Is |
||
|
|
||
| counter += ndet | ||
|
|
||
| return lsst.pipe.base.Struct(coadd_input_summary_tract=coadd_input_summary_tract) | ||
|
|
||
|
|
||
| class MakeCoaddInputSummaryConnections( | ||
| lsst.pipe.base.PipelineTaskConnections, | ||
| dimensions=("skymap",), | ||
| ): | ||
| coadd_input_summary_tract_handles = lsst.pipe.base.connectionTypes.Input( | ||
| name="coadd_input_summary_tract", | ||
| doc="Summary table aggregating coaddInputs from multiple coadds (including " | ||
| "all coaddInputs tables in a tract for a single band).", | ||
| storageClass="ArrowAstropy", | ||
| dimensions=("skymap", "tract", "band"), | ||
| deferLoad=True, | ||
| multiple=True, | ||
| ) | ||
| coadd_input_summary = lsst.pipe.base.connectionTypes.Output( | ||
| name="coadd_input_summary", | ||
| doc="Summary table aggregating coaddInputs from all coadds, including all tracts and bands.", | ||
| storageClass="ArrowAstropy", | ||
| dimensions=("skymap",), | ||
| ) | ||
|
|
||
|
|
||
| class MakeCoaddInputSummaryConfig( | ||
| lsst.pipe.base.PipelineTaskConfig, | ||
| pipelineConnections=MakeCoaddInputSummaryConnections, | ||
| ): | ||
| pass | ||
|
|
||
|
|
||
| class MakeCoaddInputSummary(lsst.pipe.base.PipelineTask): | ||
| """Task to summarize coadd inputs over a full run.""" | ||
|
|
||
| ConfigClass = MakeCoaddInputSummaryConfig | ||
| _DefaultName = "make_coadd_input_summary" | ||
|
|
||
| def run(self, *, coadd_input_summary_tract_handles): | ||
| """Run the MakeCoaddInputSummary task. | ||
|
|
||
| Parameters | ||
| ---------- | ||
| coadd_input_summary_tract_handles : `list` | ||
| [`lsst.daf.butler.DeferredDatasetHandle`] | ||
| List of summarized coadd inputs to combine. | ||
|
|
||
| Returns | ||
| ------- | ||
| result : `lsst.pipe.base.Struct` | ||
| Result struct containing: | ||
| ``coadd_input_summary`` : `astropy.table.Table` | ||
|
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. See above re: column descriptions. |
||
|
|
||
| Notes | ||
| ----- | ||
| The output table contains the the following columns: | ||
|
|
||
| tract : `int` | ||
| The tract number. | ||
| patch : `int` | ||
| The patch number. | ||
| visit : `int` | ||
| The visit number. | ||
| detector : `int` | ||
| The detector number. | ||
| weight : `float` | ||
| The weight that was used as an input to the coadd. | ||
| goodpix : `int` | ||
| The number of pixels from the visit/detector in the patch. | ||
| band : `str` | ||
| The band for the visit. | ||
| """ | ||
| self.log.info("Combining %d summarized coadd input catalogs", len(coadd_input_summary_tract_handles)) | ||
|
|
||
| coadd_input_summary = TableVStack.vstack_handles(coadd_input_summary_tract_handles) | ||
|
|
||
| return lsst.pipe.base.Struct(coadd_input_summary=coadd_input_summary) | ||
| Original file line number | Diff line number | Diff line change |
|---|---|---|
| @@ -0,0 +1,134 @@ | ||
| # This file is part of drp_tasks. | ||
| # | ||
| # LSST Data Management System | ||
| # This product includes software developed by the | ||
| # LSST Project (http://www.lsst.org/). | ||
| # See COPYRIGHT file at the top of the source tree. | ||
| # | ||
| # This program is free software: you can redistribute it and/or modify | ||
| # it under the terms of the GNU General Public License as published by | ||
| # the Free Software Foundation, either version 3 of the License, or | ||
| # (at your option) any later version. | ||
| # | ||
| # This program is distributed in the hope that it will be useful, | ||
| # but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
| # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the | ||
| # GNU General Public License for more details. | ||
| # | ||
| # You should have received a copy of the LSST License Statement and | ||
| # the GNU General Public License along with this program. If not, | ||
| # see <https://www.lsstcorp.org/LegalNotices/>. | ||
|
|
||
| import unittest | ||
|
|
||
| import numpy as np | ||
|
|
||
| from lsst.drp.tasks.make_coadd_input_summary import ( | ||
| MakeCoaddInputSummary, | ||
| MakeCoaddInputSummaryTract, | ||
| ) | ||
| from lsst.pipe.base import InMemoryDatasetHandle | ||
| from lsst.pipe.tasks.coaddInputRecorder import CoaddInputRecorderTask | ||
|
|
||
|
|
||
| class MakeCoaddInputSummaryTestCase(unittest.TestCase): | ||
| def setUp(self): | ||
| self.recorder_task = CoaddInputRecorderTask(name="recorder") | ||
|
|
||
| def _make_coadd_input_handle(self, tract, patch, band, n_input): | ||
| coadd_inputs = self.recorder_task.makeCoaddInputs() | ||
|
|
||
| coadd_inputs.ccds.resize(n_input) | ||
| coadd_inputs.ccds["id"] = np.arange(n_input) | ||
| coadd_inputs.ccds["ccd"] = np.arange(n_input) | ||
| coadd_inputs.ccds["visit"] = np.arange(100, 100 + n_input) | ||
| coadd_inputs.ccds["goodpix"][:] = 1000 | ||
| coadd_inputs.ccds["weight"][:] = 1.0 | ||
|
|
||
| handle = InMemoryDatasetHandle( | ||
| coadd_inputs, | ||
| dataId={"tract": tract, "patch": patch, "band": band}, | ||
| storageClass="CoaddInputs", | ||
| ) | ||
|
|
||
| return handle | ||
|
|
||
| def test_make_coadd_input_summary_tract(self): | ||
| handles = [self._make_coadd_input_handle(100, patch, "g", 10) for patch in [0, 10, 20]] | ||
|
|
||
| task = MakeCoaddInputSummaryTract() | ||
| summary_tract = task.run(coadd_inputs_handles=handles).coadd_input_summary_tract | ||
|
|
||
| self.assertEqual(len(summary_tract), 10 * 3) | ||
| np.testing.assert_array_equal(summary_tract["tract"], 100) | ||
| np.testing.assert_array_equal(summary_tract["band"], "g") | ||
|
|
||
| index = 0 | ||
| for handle in handles: | ||
| inputs = handle.get().ccds | ||
|
|
||
| np.testing.assert_array_equal( | ||
| summary_tract["patch"][index : index + len(inputs)], | ||
| handle.dataId["patch"], | ||
| ) | ||
| np.testing.assert_array_equal( | ||
| summary_tract["visit"][index : index + len(inputs)], | ||
| inputs["visit"], | ||
| ) | ||
| np.testing.assert_array_equal( | ||
| summary_tract["detector"][index : index + len(inputs)], | ||
| inputs["ccd"], | ||
| ) | ||
| np.testing.assert_array_equal( | ||
| summary_tract["goodpix"][index : index + len(inputs)], | ||
| inputs["goodpix"], | ||
| ) | ||
| np.testing.assert_array_almost_equal( | ||
| summary_tract["weight"][index : index + len(inputs)], | ||
| inputs["weight"], | ||
| ) | ||
| index += len(inputs) | ||
|
|
||
| def test_make_coadd_input_summary(self): | ||
| task1 = MakeCoaddInputSummaryTract() | ||
|
|
||
| summary_tract_handles = [] | ||
|
|
||
| for tract in [100, 200]: | ||
| handles = [self._make_coadd_input_handle(tract, patch, "g", 10) for patch in [0, 10, 20]] | ||
|
|
||
| summary_tract = task1.run(coadd_inputs_handles=handles).coadd_input_summary_tract | ||
|
|
||
| summary_tract_handles.append( | ||
| InMemoryDatasetHandle( | ||
| summary_tract, | ||
| dataId={"tract": tract, "band": "g"}, | ||
| storageClass="ArrowAstropy", | ||
| ), | ||
| ) | ||
|
|
||
| task2 = MakeCoaddInputSummary() | ||
| summary = task2.run(coadd_input_summary_tract_handles=summary_tract_handles).coadd_input_summary | ||
|
|
||
| self.assertEqual(len(summary), 2 * 10 * 3) | ||
|
|
||
| index = 0 | ||
| for handle in summary_tract_handles: | ||
| summary_tract = handle.get() | ||
|
|
||
| for name in ["tract", "patch", "visit", "detector", "goodpix"]: | ||
| np.testing.assert_array_equal( | ||
| summary[name][index : index + len(summary_tract)], | ||
| summary_tract[name], | ||
| ) | ||
|
|
||
| np.testing.assert_array_almost_equal( | ||
| summary["weight"][index : index + len(summary_tract)], | ||
| summary_tract["weight"], | ||
| ) | ||
|
|
||
| index += len(summary_tract) | ||
|
|
||
|
|
||
| if __name__ == "__main__": | ||
| unittest.main() |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I'm worried that "weight" is non-obvious, so I was wondering whether the columns could be listed here, with a description for each. Most would be trivial ("visit": "visit ID"), but then we'd have a description for "weight".
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Now you're asking for me to document long standing undocumented things ... and unfortunately this is a place where nobody would look. I'm not sure what to do.