-
Notifications
You must be signed in to change notification settings - Fork 0
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
実験管理 #6
Comments
Log of v003_003 |
v003_006 score
v003_006 importance LB: -1.327
|
v003_009 LB -1.416
|
holdout v003_025[500] training's l1: 0.566029 valid_1's l1: 0.589641 v003_025 HOLD_OUT score: -1.0758 holdout v003_026add "sum_radius", "tda_cocycles_shape", "tda_max_radius", [500] training's l1: 0.563407 valid_1's l1: 0.587388 holdout v003_028[500] training's l1: 0.564218 valid_1's l1: 0.587363 holdout v003_029[500] training's l1: 0.544537 valid_1's l1: 0.567271 holdout v003_030[LightGBM] [Warning] num_threads is set=-1, n_jobs=-1 will be ignored. Current value: num_threads=-1 |
train_v003_005.py train_v003_006.py train_v003_007.py train_v003_008.py train_v003_009.py train_v003_010.py train_v003_011.py train_v003_017.py train_v003_018.py train_v003_019.py train_v003_021.py train_v003_022.py train_v003_023.py train_v003_024 train_valid_v003_025.py CV: 1.0758 train_valid_v003_026.py CV:1.0781 train_valid_v003_027.py train_valid_v003_028.py CV:1.0816 holdout v003_029 CV: 1.1120 holdout v003_030 CV: 1.0682(もうちょっと良いはず) train_v003_031 train_valid_v003_032.py CV: -1.1074 train_valid_v003_033.py CV: -1.1183 train_valid_v003_034.py CV: -1.1426 train_valid_v003_035.py CV: -1.1628 . train_v003_036 train_valid_v003_037 train_valid_v003_038 train_valid_v003_039.py holdout v003_029 CV: 1.1120 holdout v003_030 CV: 1.0682(もうちょっと良いはず) train_v003_031 train_valid_v003_032.py CV: -1.1074 train_valid_v003_033.py CV: -1.1183 train_valid_v003_034.py CV: -1.1426 train_valid_v003_035.py CV: -1.1628 . train_v003_036 train_valid_v003_037 train_valid_v003_038 train_valid_v003_039.py train_valid_v003_041.py CV: -1.2896 train_valid_v003_042.py Holdout: -1.1342 train_valid_v003_043.py CV: -1.5149 train_v003_044 train_valid_v003_045.py CV: -1.3925719 train_valid_v003_046.py CV: 測定中 train_valid_v003_048.py train_valid_v003_049.py
train_v003_050.py train_v003_052.py train_v003_053.py train_v003_054.py train_v003_055.py LB: -1.874 train_v003_056.py LB: -1.813 train_v003_057.py LB: xxxx train_v004_001.py train_v004_002.py train_v004_003.py |
num_leavesチェック
v003_042 without type split : Holdout: -1.1342
|
train_v003_057.py LB: -
⇒ yiemon feat 1j2j3j + pca_v002 CV : cv score: -
⇒ num_leaves 256, max_depth=-1
train_v003_059.py LB: -1.856
⇒ yiemon feat 1j2j3j HnJ CV : cv score: -1.5654
⇒ num_leaves 256, max_depth=-1
train_v003_064.py LB: -1.889
⇒ yiemon feat 1j2j3j HnJ train_v003_059のimportanceの高いものだけ
CV : cv score: -1.59941
⇒ num_leaves 256, max_depth=-1
nohup_v003_064.out.txt
train_v003_067.py LB: -1.897
⇒ train_v003_064にcircle featureを追加
CV : cv score: -1.6077
train_v003_072.py LB: -1.897
⇒ Objectiveをhuberに
CV : cv score: -1.63236
train_all_v003_074.py LB: -2.073 (25 seeds)
⇒ train_v003_072をベースに全データ学習
train_v003_075.py LB: xxx
⇒ train_v003_067をベースに下記を追加
seg_H2J_stats_feat2_train.pkl
seg_H3J_stats_feat2_train.pkl
seg_H2J_stats_feat2_test.pkl
seg_H3J_stats_feat2_test.pkl
fc CV mean score: -1.3420, std: 0.0048.
CV : cv score: -1.62411
train_v003_076.py LB: xxx
⇒ train_v003_075.py から追加特徴を上位importanceに絞る
fc CV mean score: -1.3426, std: 0.0046., CV : cv score: -1.62323
train_v003_077.py LB: xxx
⇒ train_v003_076.py からfcもtype別に
train_v003_078.py LB: -1.964
⇒ train_v003_076.py からseg_H1J_bond_extension1を追加
⇒ CV: -1.6617
train_v003_079.py LB: xxx
⇒ train_v003_078.py からseg_H1J_bond_extension1を重要度高いものに絞る
⇒ CV: -1.67293
train_v003_080.py LB: -1.977
⇒ train_v003_079.py からさらに全体の特徴からも重要度高いものに絞る
⇒ CV: -1.68498
train_v003_082.py LB: xxx
さらに特徴量を重要度で削減
train_v003_083.py LB: xxx
n_estimatorを増やす
train_v003_083.py LB: xxx
'max_bin': 64,
train_v003_085.py LB: xxx
y_fcをtarget(scalar_coupling_constant)にしてみる
train_v003_096.py LB:
⇒ train_v003_080.py をベースにfc無くしたらどうなるか確認
古い履歴
The text was updated successfully, but these errors were encountered: