This program demonstrates the implementation of a linear regression model using PyTorch.
import torch #pytorch library - for tensor computations
import torch.nn as nn #for building neural networks
import numpy as np #numerical data manipulation
from sklearn import datasets #To generate and load datasets
import matplotlib.pyplot as plt #for creating visualizations
x_numpy, y_numpy = datasets.make_regression(n_samples=70, n_features =1, noise=17, random_state=1)
# x_numpy: A 2D NumPy array with shape (n_samples, n_features)
# y_numpy: A 1D NumPy array with shape (n_samples,)
n_fueatures= 1 - Represent 2D structure
x = torch.from_numpy(x_numpy.astype(np.float32)) #convert data type for tensor computations
y = torch.from_numpy(y_numpy.astype(np.float32))
y = y.view(y.shape[0],1) # Reshape into a 2D tensor with shape (n, 1)
n_samples, n_features = x.shape
input_size = n_features
output_size = 1
model = nn.Linear(input_size, output_size)
criterion = nn.MSELoss()
optimizer = torch.optim.SGD(model.parameters(), lr=0.01)
num_epochs = 100
for epoch in range(num_epochs):
#forward pass and loss
y_predicted = model(x)
loss = criterion(y_predicted, y)
#backward pass
loss.backward()
#update
optimizer.step()
optimizer.zero_grad()
if (epoch+1) % 10 == 0:
print(f'Epoch [{epoch+1}/ {num_epochs}], Loss: {loss.item():0.4}') #check
#plot
predicted = model(x).detach().numpy()
plt.plot(x_numpy, y_numpy, 'ro', label='Original data')
plt.plot(x_numpy, predicted, 'b',label='Fitted line') #create line plot
plt.show()
