AI-Driven Patch Tuesday Risk Dashboard
A modular framework that ingests Microsoft Patch Tuesday data, maps vulnerabilities to organizational assets, and calculates contextual risk with future GenAI reasoning capabilities.
PatchIntel is not a traditional vulnerability scanner. It is a risk interpretation & decision-support engine that transforms technical patch data into actionable insights for security leaders.
- π Patch Intelligence - Fetch & parse Microsoft Patch Tuesday updates
- π’ Asset Mapping - Correlate vulnerabilities with organizational assets
- π Risk Scoring - Quantify exposure with deterministic risk models
- π€ AI Reasoning (Future) - Generate insights and remediation guidance
- Python 3.8 or higher
- pip (Python package manager)
- Internet connection
- Clone the repository:
git clone https://github.com/mclperera/patchintel.git
cd patchintel- Install dependencies:
pip install -r requirements.txt- Fetch your first Patch Tuesday:
cd patch-intel
python patchintel.py fetch --month 2024-11- View module capabilities:
python patchintel.py --help
python patchintel.py infopatchintel/
βββ docs/ # Documentation
β βββ PRD.md # Product Requirements Document
β
βββ patch-intel/ # β
Phase 1: Patch Tuesday data ingestion
β βββ src/ # Source code
β β βββ __init__.py # Package initialization
β β βββ fetcher.py # Microsoft API client
β β βββ parser.py # Data normalizer
β β βββ cli.py # Command-line interface
β βββ samples/ # Sample datasets
β βββ patchintel.py # Main CLI entry point
β
βββ asset-ingestion/ # β
Phase 2: Asset ingestion & normalization
β βββ src/ # Source code
β β βββ __init__.py # Package initialization
β β βββ ingestion.py # Multi-source asset loader
β β βββ normalizer.py # Data normalizer
β β βββ cli.py # Command-line interface
β βββ samples/ # Sample ServiceNow export
β βββ output/ # Normalized assets
β βββ patchintel-assets.py # Main CLI entry point
β βββ PHASE2_SUMMARY.md # Phase 2 completion summary
β βββ PHASE3_INTEGRATION.md # Integration guide for Phase 3
β
βββ risk-engine/ # π§ Phase 3: Risk calculation (coming soon)
βββ dashboard/ # π§ Phase 4: Web UI (coming soon)
βββ ai-layer/ # π§ Phase 5: GenAI reasoning (coming soon)
β
βββ requirements.txt # Python dependencies
βββ .gitignore # Git ignore rules
βββ README.md # This file
Status: Complete
Retrieve and normalize Microsoft Patch Tuesday vulnerability data.
Features:
- β Fetch data via Microsoft Security Update Guide API
- β Parse CVRF documents and extract CVE details
- β Export to JSON and CSV formats
- β Generate vulnerability statistics
Usage:
cd patch-intel
python patchintel.py fetch 2025-Oct
python patchintel.py process 2025-OctStatus: Complete
Ingest and standardize asset inventory data from multiple sources.
Features:
- β ServiceNow CMDB export support
- β Generic CSV/JSON import with field mapping
- β Automatic OS name normalization
- β Data quality scoring (0-100)
- β Field completeness validation
- β Standard schema for Phase 3 integration
Usage:
cd asset-ingestion
# Load and preview assets
python patchintel-assets.py ingest samples/servicenow_cmdb_export.csv --preview
# Normalize to standard schema
python patchintel-assets.py normalize samples/servicenow_cmdb_export.csv output/assets.csv --stats
# Validate data quality
python patchintel-assets.py validate samples/servicenow_cmdb_export.csv --min-quality 70Output Schema:
- 20 standardized fields (hostname, os, os_version, business_criticality, patch_group, etc.)
- 91/100 average data quality on test data
- Ready for Phase 3 CVE correlation
π Phase 2 Summary | Phase 3 Integration Guide
Correlate vulnerabilities to assets and calculate risk scores.
Planned Features:
- CVE-to-asset matching (OS/version correlation)
- Risk scoring algorithm (CVSS Γ Criticality Γ Exploitability)
- Prioritized remediation lists by patch group
- Deployment scheduling based on maintenance windows
- Summary reports and statistics
Integration:
- Input: Phase 1 CVEs (233 from Oct 2025) + Phase 2 Assets (25 normalized)
- Output: Asset-CVE pairs with contextual risk scores (0-100)
Local web UI for visualization and exploration.
Planned Features:
- Risk heatmaps
- Asset vulnerability views
- CVE breakdown by severity
- Export capabilities
Intelligent analysis and recommendations.
Planned Features:
- Natural language impact summaries
- Tailored remediation guidance
- Asset data enrichment
- Executive briefings
cd patch-intel
python patchintel.py fetch --month 2024-11# Show statistics only
python patchintel.py parse samples/patch_tuesday_2024_11.json --stats-only
# Parse and save normalized data
python patchintel.py parse samples/patch_tuesday_2024_11.json --output-dir normalized/python patchintel.py process --month 2024-11{
"cve_id": "CVE-2024-43451",
"title": "Windows NTLM Remote Code Execution Vulnerability",
"severity": "Critical",
"cvss_base_score": 9.8,
"exploit_status": "ACTIVE",
"affected_products": ["Windows 11", "Windows Server 2022"],
"kb_articles": ["KB5012345"]
}==============================================================
PATCH TUESDAY DATA SUMMARY
==============================================================
Total Vulnerabilities: 89
By Severity:
Critical : 15
Important : 58
Moderate : 14
Low : 2
β οΈ Vulnerabilities with Active Exploits: 3
π΄ Critical Vulnerabilities: 15
π Average CVSS Score: 7.2
==============================================================
- Language: Python 3.8+
- Data Processing: pandas
- API Calls: requests
- CLI: click
- Future: FastAPI, Streamlit (for dashboard)
- Product Requirements Document - Full project vision and roadmap
- Phase 2 Summary - Asset ingestion completion report
- Phase 3 Integration - Risk engine integration guide
We welcome contributions! This project follows a phased approach:
- Each phase is a self-contained module
- Modules can be used independently or together
- Follow existing code style and documentation standards
To contribute:
- Fork the repository
- Create a feature branch
- Make your changes
- Add tests and documentation
- Submit a pull request
| Phase | Status | Description |
|---|---|---|
| Phase 1 | β Complete | Patch Tuesday data ingestion (233 CVEs from Oct 2025) |
| Phase 2 | β Complete | Asset ingestion & normalization (25 assets, 91/100 quality) |
| Phase 3 | π§ Next | Rule-based risk engine (CVE-Asset correlation) |
| Phase 4 | π§ Planned | Basic dashboard |
| Phase 5 | π§ Planned | GenAI reasoning layer |
| Phase 6 | π Future | Adaptive CMDB overlay |
- β Asset ingestion from ServiceNow CMDB exports
- β Multi-source asset loading (CSV, JSON)
- β Automatic OS normalization
- β Data quality scoring (0-100)
- β Standard 20-field schema
- β Phase 3 integration ready
- β Microsoft Patch Tuesday data fetching
- β CVRF document parsing and normalization
- β JSON and CSV export capabilities
- β Vulnerability statistics generation
- β CLI interface
[Add your license here]
For questions, issues, or feature requests:
- Open an issue on GitHub
- Check module-specific READMEs
- Review the PRD for project context
Built with β€οΈ for security teams everywhere
Making Patch Tuesday less painful, one module at a time.