Skip to content

mfagerlund/gradient-script

Repository files navigation

GradientScript

npm version License: MIT GitHub release Node.js

For LLMs: This README is available in raw format at: https://raw.githubusercontent.com/mfagerlund/gradient-script/main/README.md

Symbolic automatic differentiation for structured types

GradientScript is a source-to-source compiler that automatically generates gradient functions from your mathematical code. Unlike numerical AD frameworks (JAX, PyTorch), it produces clean, human-readable gradient formulas you can inspect, optimize, and integrate directly into your codebase.

It's perfect for LLM usage where the LLM can verify existing gradients or construct gradients you require with less risks of making errors.

Why GradientScript?

  • From real code to gradients: Write natural math code, get symbolic derivatives
  • Verified correctness: Every gradient automatically checked against numerical differentiation
  • Structured types: Work with vectors {x, y} and custom structures, not just scalars
  • Zero runtime overhead: No tape, no graph - just pure gradient functions
  • Multiple output languages: TypeScript, JavaScript, Python, or C#
  • Readable output: Human-reviewable formulas with automatic optimization

Installation

npm install -g gradient-script

Quick Example

You have TypeScript code computing 2D vector distance:

// Your original TypeScript code
function distance(u: Vec2, v: Vec2): number {
  const dx = u.x - v.x;
  const dy = u.y - v.y;
  return Math.sqrt(dx * dx + dy * dy);
}

Convert it to GradientScript (realistically, let your LLM convert it giving it a reference here - and/or free usage of the CLI) by marking what you need gradients for:

// distance.gs
function distance(u∇: {x, y}, v∇: {x, y}) {
  dx = u.x - v.x
  dy = u.y - v.y
  return sqrt(dx * dx + dy * dy)
}

Generate gradients:

gradient-script distance.gs

Get complete forward and gradient functions:

// Forward function
function distance(u, v) {
  const dx = u.x - v.x;
  const dy = u.y - v.y;
  return Math.sqrt(dx * dx + dy * dy);
}

// Gradient function - returns { value, du, dv }
function distance_grad(u, v) {
  const dx = u.x - v.x;
  const dy = u.y - v.y;
  const value = Math.sqrt(dx * dx + dy * dy);

  const _tmp0 = 2 * Math.sqrt(dx * dx + dy * dy);

  const du = {
    x: (2 * dx) / _tmp0,
    y: (2 * dy) / _tmp0,
  };
  const dv = {
    x: (2 * (-dx)) / _tmp0,
    y: (2 * (-dy)) / _tmp0,
  };

  return { value, du, dv };
}

Now use it in your optimizer, physics engine, or neural network!

More Examples

From C++ Physics Code

Original C++ spring force calculation:

float spring_energy(Vec2 p1, Vec2 p2, float rest_length, float k) {
    float dx = p2.x - p1.x;
    float dy = p2.y - p1.y;
    float dist = sqrt(dx*dx + dy*dy);
    float stretch = dist - rest_length;
    return 0.5f * k * stretch * stretch;
}

GradientScript version:

function spring_energy(p1∇: {x, y}, p2∇: {x, y}, rest_length, k) {
  dx = p2.x - p1.x
  dy = p2.y - p1.y
  dist = sqrt(dx * dx + dy * dy)
  stretch = dist - rest_length
  return 0.5 * k * stretch^2
}

Generated gradient (for physics simulation):

function spring_energy_grad(p1, p2, rest_length, k) {
  const dx = p2.x - p1.x;
  const dy = p2.y - p1.y;
  const dist = Math.sqrt(dx * dx + dy * dy);
  const stretch = dist - rest_length;
  const value = 0.5 * k * stretch * stretch;

  const _tmp0 = 2 * Math.sqrt(dx * dx + dy * dy);

  const dp1 = {
    x: k * stretch * (-(2 * dx) / _tmp0),
    y: k * stretch * (-(2 * dy) / _tmp0),
  };
  const dp2 = {
    x: k * stretch * (2 * dx) / _tmp0,
    y: k * stretch * (2 * dy) / _tmp0,
  };

  return { value, dp1, dp2 };
}

Use dp1 and dp2 as forces in your physics simulation!

From C# Graphics Code

Original C# normalized dot product:

float NormalizedDotProduct(Vector2 u, Vector2 v) {
    float dot = u.X * v.X + u.Y * v.Y;
    float u_mag = (float)Math.Sqrt(u.X * u.X + u.Y * u.Y);
    float v_mag = (float)Math.Sqrt(v.X * v.X + v.Y * v.Y);
    return dot / (u_mag * v_mag);
}

GradientScript version:

function normalized_dot(u∇: {x, y}, v∇: {x, y}) {
  dot = u.x * v.x + u.y * v.y
  u_mag = sqrt(u.x * u.x + u.y * u.y)
  v_mag = sqrt(v.x * v.x + v.y * v.y)
  return dot / (u_mag * v_mag)
}

Generated gradient:

function normalized_dot_grad(u, v) {
  const dot = u.x * v.x + u.y * v.y;
  const u_mag = Math.sqrt(u.x * u.x + u.y * u.y);
  const v_mag = Math.sqrt(v.x * v.x + v.y * v.y);
  const value = dot / (u_mag * v_mag);

  const _tmp0 = u_mag * v_mag;
  const _tmp1 = 2 * u_mag;
  const _tmp2 = 2 * v_mag;
  const _tmp3 = _tmp0 * _tmp0;

  const du = {
    x: (v.x * _tmp0 - dot * u.x / _tmp1 * v_mag) / _tmp3,
    y: (v.y * _tmp0 - dot * u.y / _tmp1 * v_mag) / _tmp3,
  };
  const dv = {
    x: (u.x * _tmp0 - dot * u_mag * v.x / _tmp2) / _tmp3,
    y: (u.y * _tmp0 - dot * u_mag * v.y / _tmp2) / _tmp3,
  };

  return { value, du, dv };
}

From JavaScript Robotics

Original JavaScript angle between vectors:

function angleBetween(u, v) {
  const cross = u.x * v.y - u.y * v.x;
  const dot = u.x * v.x + u.y * v.y;
  return Math.atan2(cross, dot);
}

GradientScript version:

function angle_between(u∇: {x, y}, v∇: {x, y}) {
  cross = u.x * v.y - u.y * v.x
  dot = u.x * v.x + u.y * v.y
  return atan2(cross, dot)
}

Generated gradient:

function angle_between_grad(u, v) {
  const cross = u.x * v.y - u.y * v.x;
  const dot = u.x * v.x + u.y * v.y;
  const value = Math.atan2(cross, dot);

  const _tmp0 = dot * dot + cross * cross;

  const du = {
    x: (dot * v.y - cross * v.x) / _tmp0,
    y: (dot * (-v.x) - cross * v.y) / _tmp0,
  };
  const dv = {
    x: (dot * (-u.y) - cross * u.x) / _tmp0,
    y: (dot * u.x - cross * u.y) / _tmp0,
  };

  return { value, du, dv };
}

Command Line Options

gradient-script <file.gs> [options]

Options:
  --format <format>              typescript (default), javascript, python, csharp
  --no-simplify                  Disable gradient simplification
  --no-cse                       Disable common subexpression elimination
  --no-comments                  Omit comments in generated code
  --guards                       Emit runtime guards for potential singularities
  --epsilon <value>              Epsilon value for guards (default: 1e-10)
  --csharp-float-type <type>     C# float precision: float (default) or double
  --help, -h                     Show help message

GradientScript automatically generates gradient functions for all functions in your .gs file.

Examples:

# Generate TypeScript (default)
gradient-script spring.gs

# Generate Python
gradient-script spring.gs --format python

# Generate JavaScript without CSE optimization
gradient-script spring.gs --format javascript --no-cse

# Generate C# for Unity/Godot (float precision)
gradient-script spring.gs --format csharp

# Generate C# with double precision
gradient-script spring.gs --format csharp --csharp-float-type double

Language Syntax

Function Declaration

function name(param1∇: {x, y}, param2∇, param3) {
  local1 = expression
  local2 = expression
  return expression
}
  • The symbol marks parameters that need gradients
  • Type annotations {x, y} specify structured types
  • Parameters without are treated as constants
  • Use = for assignments, not const or let

Structured Types

// 2D vectors
u∇: {x, y}

// 3D vectors
v∇: {x, y, z}

// Scalars (no annotation)
param∇

Built-in Functions

Vector operations:

  • dot2d(u, v) - dot product (expands to u.x*v.x + u.y*v.y)
  • cross2d(u, v) - 2D cross product (expands to u.x*v.y - u.y*v.x)
  • magnitude2d(v) - vector length (expands to sqrt(v.x*v.x + v.y*v.y))
  • normalize2d(v) - unit vector

Math functions:

  • sqrt(x), sin(x), cos(x), tan(x)
  • asin(x), acos(x), atan(x)
  • atan2(y, x) - two-argument arctangent
  • exp(x), log(x), abs(x)

Non-smooth functions (with subgradients):

  • min(a, b) - minimum of two values
  • max(a, b) - maximum of two values
  • clamp(x, lo, hi) - clamp x to range [lo, hi]

Operators:

  • Arithmetic: +, -, *, /
  • Power: x^2 (converts to x * x for better performance)
  • Negation: -x

Output Formats

TypeScript (default):

const du = { x: expr1, y: expr2 };

JavaScript:

const du = { x: expr1, y: expr2 };

Python:

du = { "x": expr1, "y": expr2 }

How It Works

GradientScript uses symbolic differentiation with the chain rule:

  1. Parse your function into an expression tree
  2. Type inference determines scalar vs structured gradients
  3. Symbolic differentiation applies calculus rules (product rule, chain rule, etc.)
  4. Simplification reduces complex expressions
  5. CSE optimization eliminates redundant subexpressions
  6. Code generation emits clean TypeScript/JavaScript/Python

Common Subexpression Elimination (CSE)

GradientScript automatically factors out repeated expressions:

Before CSE:

const du_x = v.x / sqrt(u.x*u.x + u.y*u.y) - dot * u.x / (2 * sqrt(u.x*u.x + u.y*u.y));
const du_y = v.y / sqrt(u.x*u.x + u.y*u.y) - dot * u.y / (2 * sqrt(u.x*u.x + u.y*u.y));

After CSE:

const _tmp0 = Math.sqrt(u.x * u.x + u.y * u.y);
const _tmp1 = 2 * _tmp0;
const du = {
  x: v.x / _tmp0 - dot * u.x / _tmp1,
  y: v.y / _tmp0 - dot * u.y / _tmp1,
};

This improves both performance and readability.

Non-Smooth Functions & Subgradients

GradientScript supports non-smooth functions (min, max, clamp) using subgradient differentiation. These are essential for constrained optimization, robust losses, and geometric queries.

Example: Point-to-Segment Distance

function distance_point_segment(p∇: {x, y}, a: {x, y}, b: {x, y}) {
  vx = b.x - a.x
  vy = b.y - a.y
  wx = p.x - a.x
  wy = p.y - a.y
  t = (wx * vx + wy * vy) / (vx * vx + vy * vy)
  t_clamped = clamp(t, 0, 1)  // Project onto segment
  qx = a.x + t_clamped * vx
  qy = a.y + t_clamped * vy
  dx = p.x - qx
  dy = p.y - qy
  return sqrt(dx * dx + dy * dy)
}

Generated code correctly handles the non-smooth boundaries at segment endpoints:

const t_clamped = Math.max(0, Math.min(1, t));  // clamp expansion

How subgradients work:

  • At smooth points: standard gradient
  • At non-smooth points (e.g., min(a,b) when a=b): any valid subgradient
  • Converges for convex functions in optimization
  • Common in L1 regularization, SVM, robust losses

Use cases:

  • Constrained optimization (clamp parameters to valid ranges)
  • Robust losses (Huber-like functions with min/max)
  • Geometric queries (distance to segments, boxes, polytopes)
  • Activation functions (ReLU = max(0, x))

Use Cases

  • Physics simulations - Get force gradients for constraint solvers
  • Robotics - Compute Jacobians for inverse kinematics
  • Machine learning - Custom loss functions with analytical gradients
  • Computer graphics - Optimize shader parameters
  • Game engines - Procedural animation with gradient-based optimization
  • Scientific computing - Sensitivity analysis and optimization

Edge Case Detection

GradientScript analyzes your functions and warns about potential issues:

⚠️  EDGE CASE WARNINGS:

  • Division by zero (1 occurrence)
    Division by zero if denominator becomes zero
    💡 Add check: if (denominator === 0) return { value: 0, gradients: {...} };

  • Square root of negative (2 occurrences)
    magnitude of vector (uses sqrt internally)
    💡 Ensure vector components are valid

You can then add appropriate guards in your code that uses the generated functions.

Architecture

GradientScript uses a source-to-source compilation approach with the following pipeline:

Input (.gs file)
  ↓
Lexer & Parser → AST
  ↓
Type Inference → Scalar vs Structured types
  ↓
Built-in Expansion → dot2d(), magnitude(), etc.
  ↓
Symbolic Differentiation → Product rule, chain rule, quotient rule
  ↓
Algebraic Simplification → 0.5*(a+a) → a, etc.
  ↓
CSE Optimization → Extract common subexpressions
  ↓
Code Generation → TypeScript/JavaScript/Python
  ↓
Output (gradient functions)

All gradient computations are verified against numerical differentiation to ensure correctness.

Testing & Correctness

Every gradient is automatically verified against numerical differentiation.

GradientScript includes a comprehensive test suite that validates all generated gradients using finite differences. This means you can trust that the symbolic derivatives are mathematically correct.

npm test

Current status: 129 tests passing

Test suite includes:

Gradient Verification Tests

  • Numerical gradient checking: All symbolic gradients compared against finite differences
  • Basic scalar differentiation (power, product, chain rules)
  • Structured type gradients (2D/3D vectors)
  • Built-in function derivatives (sin, cos, atan2, sqrt, etc.)
  • Complex compositions and chain rule applications

Property-Based Tests

  • Singularity handling: Near-zero denominators, parallel vectors, origin points
  • Rotation invariance: Rotating inputs rotates gradients consistently
  • Scale invariance: Functions like cosine similarity maintain invariance properties
  • Symmetry: Distance function has symmetric gradients
  • Translation invariance: Relative functions have zero gradient sum
  • SE(2) transformations: Zero gradients at exact match, proper gradient direction
  • Reprojection invariants: Uniform scaling maintains structure
  • Bearing properties: Rotation shifts angle, gradient perpendicular to input

Code Generation Tests

  • CSE optimization correctness
  • Operator precedence preservation
  • Power optimization (x*x vs Math.pow)
  • Multiple output formats (TypeScript, JavaScript, Python, C#)
  • Algebraic simplification correctness

Key guarantee: If a test passes, the generated gradient is correct to within numerical precision (~10 decimal places).

Comparison with Other Tools

Feature GradientScript JAX/PyTorch SymPy Manual Math
Output Clean source code Tape/Graph Symbolic expr Pen & paper
Runtime Zero overhead Tape overhead Symbolic eval Zero
Readability High Low Medium High
Structured types Native Tensors only Limited Natural
Integration Copy/paste code Framework required Eval strings Type by hand
Speed Native JS/TS/Py JIT optimized Slow Native
Debugging Standard debugger Special tools Hard Standard

Contributing

GradientScript is under active development. Contributions welcome!

Roadmap:

  • Property-based tests for mathematical invariants
  • Additional output formats (C, Rust, GLSL)
  • Web playground for live gradient generation
  • Benchmarking suite

Examples

See the examples/ directory for complete examples:

  • Physics Constraints: examples/PHYSICS_EXAMPLES.md - Comprehensive guide to using structured types for XPBD constraints, rigid body dynamics, and more
    • Raw (LLM-friendly): https://raw.githubusercontent.com/mfagerlund/gradient-script/main/examples/PHYSICS_EXAMPLES.md
  • XPBD Constraints: xpbd-rod-constraint.gs, xpbd-angle-constraint.gs
  • Distance Functions: distance.gs, point-segment-distance.gs
  • Geometry: triangle-area.gs, bearing.gs, circle-fit.gs

Try them:

# View physics examples guide
cat examples/PHYSICS_EXAMPLES.md

# Generate TypeScript from XPBD rod constraint
gradient-script examples/xpbd-rod-constraint.gs

# Generate C# for Unity/Godot
gradient-script examples/xpbd-angle-constraint.gs --format csharp

License

MIT

Credits

Inspired by symbolic differentiation in SymPy, the ergonomics of JAX, and the practicality of writing math code by hand.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Packages

No packages published

Contributors 2

  •  
  •