-
Couldn't load subscription status.
- Fork 301
Closed
Description
I ran the pre-trained model in eval mode and got this output:
python main.py --mode eval --data_type structure --config_file structure_config.json --data_root_dir data/ --model_load_path data/model/structure.pth --debug --device cpu
{'lr': 5e-05, 'lr_backbone': 1e-05, 'batch_size': 2, 'weight_decay': 0.0001, 'epochs': 20, 'lr_drop': 1, 'lr_gamma': 0.9, 'clip_max_norm': 0.1, 'backbone': 'resnet18', 'num_classes': 6, 'dilation': False, 'position_embedding': 'sine', 'emphasized_weights': {}, 'enc_layers': 6, 'dec_layers': 6, 'dim_feedforward': 2048, 'hidden_dim': 256, 'dropout': 0.1, 'nheads': 8, 'num_queries': 125, 'pre_norm': True, 'masks': False, 'aux_loss': False, 'mask_loss_coef': 1, 'dice_loss_coef': 1, 'ce_loss_coef': 1, 'bbox_loss_coef': 5, 'giou_loss_coef': 2, 'eos_coef': 0.4, 'set_cost_class': 1, 'set_cost_bbox': 5, 'set_cost_giou': 2, 'device': 'cpu', 'seed': 42, 'start_epoch': 0, 'num_workers': 2, 'data_root_dir': 'data/', 'config_file': 'structure_config.json', 'data_type': 'structure', 'model_load_path': 'data/model/structure.pth', 'metrics_save_filepath': '', 'table_words_dir': None, 'mode': 'eval', 'debug': True, 'checkpoint_freq': 1, '__module__': '__main__', '__dict__': <attribute '__dict__' of 'Args' objects>, '__weakref__': <attribute '__weakref__' of 'Args' objects>, '__doc__': None}
----------------------------------------------------------------------------------------------------
loading model
loading model from checkpoint
loading data
creating index...
index created!
Test: [0/1] eta: 0:00:00 class_error: 0.00 loss: 0.3392 (0.3392) loss_ce: 0.0231 (0.0231) loss_bbox: 0.0250 (0.0250) loss_giou: 0.2912 (0.2912) loss_ce_unscaled: 0.0231 (0.0231) class_error_unscaled: 0.0000 (0.0000) loss_bbox_unscaled: 0.0050 (0.0050) loss_giou_unscaled: 0.1456 (0.1456) cardinality_error_unscaled: 0.0000 (0.0000) time: 0.3716 data: 0.0614 max mem: 0
Test: Total time: 0:00:00 (0.3762 s / it)
Averaged stats: class_error: 0.00 loss: 0.3392 (0.3392) loss_ce: 0.0231 (0.0231) loss_bbox: 0.0250 (0.0250) loss_giou: 0.2912 (0.2912) loss_ce_unscaled: 0.0231 (0.0231) class_error_unscaled: 0.0000 (0.0000) loss_bbox_unscaled: 0.0050 (0.0050) loss_giou_unscaled: 0.1456 (0.1456) cardinality_error_unscaled: 0.0000 (0.0000)
Accumulating evaluation results...
DONE (t=0.01s).
IoU metric: bbox
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.619
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.750
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.629
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.619
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.281
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.506
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.638
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = -1.000
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.638
pubmed: AP50: 0.750, AP75: 0.629, AP: 0.619, AR: 0.638
How can I visualize the model predictions on input images? like : this
Metadata
Metadata
Assignees
Labels
No labels