Skip to content

ml-lab/style-swap

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Fast Patch-based Style Transfer of Arbitrary Style

Paper: https://arxiv.org/abs/1612.04337

Code is written in Torch and requires CUDA and cuDNN.

Examples

(3x3 Patches) Content - w/ Starry Night - w/ Small Worlds I
with AvgPooling - using Inverse Network - using Inverse Network
(w/ Composition X) Original - 5x5 Patch - 9x9 Patch - 15x15 Patch
(w/ La Muse) Original - 3x3 Patch - 5x5 Patch - 9x9 Patch

Download Pretrained VGG-19

git clone https://github.com/rtqichen/style-swap
cd style-swap/models
sh download_models.sh
cd ..

Usage

Stylizing a single image:

th style-swap.lua --content images/content/bike.jpg --style images/style/starry_night.jpg

More options:

th style-swap.lua --help

eg. increase --patchSize for more abstract stylization

th style-swap.lua --content images/content/brad_pitt.jpg --style images/style/la_muse.jpg --patchSize 7 --patchStride 3

eg. use --contentBatch to stylize all images in a directory.

th style-swap.lua --contentBatch images/content --style images/style/starry_night.jpg

Training an inverse network

th train-vgg-decoder.lua --contentDir /path/to/dir --styleDir /path/to/dir

More options:

th train-vgg-decoder.lua --help

For training the network in our paper, we used images from MS COCO and the Painter by Numbers competition hosted by Kaggle.

Video

Frame-by-frame stylization can be done using the -contentBatch option.

An example script using ffmpeg to extract frames, stylize, and re-encode a video.

mkdir video_frames
ffmpeg -i /path/to/video -qscale:v 2 video_frames/video_%04d.jpg
th style-swap --contentBatch video_frames --style /path/to/style/file --save stylized_frames
ffmpeg -i stylized_frames/video_%04d_stylized.jpg -c:v libx264 -pix_fmt yuv420p stylized_video.mp4

Examples of stylized videos are placed in the videos folder. (Original video by TimeLapseHD.)

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Lua 99.6%
  • Shell 0.4%