MLOS Linux Distribution - Ubuntu-based
A complete Linux distribution optimized for machine learning workloads, based on Ubuntu 22.04/24.04 LTS with MLOS Core, Axon, and kernel-level ML optimizations pre-installed.
MLOS Linux (Ubuntu) is a purpose-built Linux distribution that includes:
- ML-aware kernel scheduler (US-63/865,176) - Priority-based ML task scheduling
- Tensor memory management - Zero-copy tensor operations
- GPU resource orchestration - Multi-model GPU coordination
- Pre-installed MLOS Core - Kernel-level ML runtime (HTTP, gRPC, IPC APIs)
- Pre-installed Axon - Universal model installer (80%+ repository coverage)
- ML development toolchain - Python, PyTorch, TensorFlow, ONNX Runtime
- ✅ LSB (Linux Standard Base) - Interoperability compliance
- ✅ FHS (Filesystem Hierarchy Standard) - Standard directory structure
- ✅ Debian Policy Manual - Package format compliance
- ✅ systemd - Standard init system
- ✅ GPG Signing - Package and image signing
MLOS Linux (Ubuntu) v1.0.0
├── Linux Kernel (6.x+ with MLOS patches)
│ ├── ML-aware scheduler
│ ├── Tensor memory management
│ └── GPU resource orchestration
├── Base System (Ubuntu 22.04/24.04 LTS)
│ ├── systemd (init system)
│ ├── NetworkManager (networking)
│ ├── Package manager (apt/dpkg)
│ └── Core utilities (LSB compliant)
├── MLOS Stack (.deb packages)
│ ├── mlos-core (v1.0.0+)
│ ├── axon (v1.5.0+)
│ └── mlos-toolchain
├── ML Development Toolchain
│ ├── Python 3.11+ with ML libraries
│ ├── CUDA toolkit (optional)
│ ├── PyTorch, TensorFlow, ONNX Runtime
│ └── ML development tools
└── Installation Tools
├── ISO installer (debian-installer/ubiquity)
├── Network installation (PXE)
└── Cloud images (cloud-init)
This repository is public and contains only:
- ✅ Build scripts and configuration
- ✅ Distribution packaging files
- ✅ Installation system files
- ✅ Documentation
Private Components:
- 🔒 MLOS Core binaries (downloaded from private registry during build)
- 🔒 Kernel patches (downloaded from private registry during build)
- 🔒 Source code (remains in private repositories)
See IP Protection Plan for details.
- Ubuntu 22.04+ build environment
- GitHub Actions secrets configured:
MLOS_CORE_ARTIFACT_TOKEN- Access to MLOS Core artifactsMLOS_KERNEL_PATCHES_TOKEN- Access to kernel patchesGPG_PUBLIC_KEY- Public key for signature verification
# 1. Clone repository
git clone https://github.com/mlOS-foundation/mlos-linux-ubuntu.git
cd mlos-linux-ubuntu
# 2. Download artifacts (requires tokens)
./scripts/download-artifacts.sh \
--mlos-core-version v1.0.0 \
--kernel-patches-version v1.0.0
# 3. Verify signatures
./scripts/verify-artifacts.sh
# 4. Build distribution
./scripts/build-ubuntu.sh \
--mlos-core-deb mlos-core_1.0.0_amd64.deb \
--kernel-patches kernel-patches/
# 5. Result: Bootable ISO image- Download ISO from Releases
- Create bootable USB:
dd if=mlos-linux-ubuntu-v1.0.0.iso of=/dev/sdX - Boot from USB and follow installer
- MLOS Core and Axon are pre-installed and auto-start on boot
# PXE boot configuration
# See docs/INSTALLATION.md for details# Download cloud image
wget https://github.com/mlOS-foundation/mlos-linux-ubuntu/releases/download/v1.0.0/mlos-linux-ubuntu-v1.0.0-cloud.img
# Deploy to cloud provider
# See docs/CLOUD_DEPLOYMENT.mdAfter installation:
# MLOS Core is running
curl http://localhost:8080/health
# Install a model with Axon
axon install hf/bert-base-uncased@latest
# Register with MLOS Core
axon register hf/bert-base-uncased@latest
# Run inference
curl -X POST http://localhost:8080/models/hf/bert-base-uncased@latest/inference \
-H "Content-Type: application/json" \
-d '{"input": "Hello, MLOS!", "batch_size": 1}'Minimum:
- CPU: 2 cores, x86_64 or ARM64
- RAM: 4GB
- Storage: 20GB
- GPU: Optional (NVIDIA, AMD, Intel)
Recommended:
- CPU: 4+ cores
- RAM: 8GB+
- Storage: 50GB+ SSD
- GPU: NVIDIA with CUDA support
- Building Guide - How to build the distribution
- Installation Guide - Installation instructions
- Standards Compliance - LSB, FHS, Debian Policy
- IP Protection - IP protection strategy
- mlos-linux-flatcar - Flatcar-based distribution
- mlos-linux-kernel - Shared kernel patches
- axon - Universal model installer
- core - MLOS Core runtime (private)
Current Status: Planning Phase
Target Release: v1.0.0 - Q2-Q3 2026
Timeline: Phase 3 (Production Readiness)
This repository is in planning phase. Contributions welcome once initial structure is established.
See CONTRIBUTING.md for guidelines (to be created).
- Distribution scripts/configs: MIT License
- MLOS Core binaries: Proprietary License (see LICENSES/MLOS_CORE_LICENSE.txt)
- Kernel patches: Proprietary License (see LICENSES/KERNEL_PATCHES_LICENSE.txt)
- Base system (Ubuntu): Ubuntu license (as-is)
MLOS Foundation - Building the future of ML infrastructure.