Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
18 commits
Select commit Hold shift + click to select a range
72d5485
replace author to Iguazio manually (#905)
danielperezz Sep 28, 2025
bbcf638
Organize CLI directory + new CLI for generating item.yaml files (#906)
danielperezz Oct 5, 2025
73b4423
fill count events notebook (#908)
Eyal-Danieli Nov 5, 2025
333d4e7
avoid noise reduction unit test (#909)
Eyal-Danieli Nov 6, 2025
77e28ba
Add histogram-data-drift monitoring application module (without examp…
danielperezz Nov 9, 2025
608112c
chore(readme): auto-update asset tables [skip ci]
iguazio-cicd Nov 9, 2025
c56ef48
Fill histogram-data-drift example notebook (#912)
danielperezz Nov 9, 2025
9884e85
Add evidently demo app monitoring application module (without exampl…
danielperezz Nov 11, 2025
659b791
chore(readme): auto-update asset tables [skip ci]
iguazio-cicd Nov 11, 2025
ce19993
[Translate] Require torch>=2.6 for the translate function to work pro…
danielperezz Nov 16, 2025
f2ec931
[CLI] Generated READMEs are produced with broken links to the items (…
danielperezz Nov 17, 2025
5c013ba
chore(readme): auto-update asset tables [skip ci]
iguazio-cicd Nov 17, 2025
2f33974
OpenAI Module without notebook (#917)
guylei-code Nov 17, 2025
277e11d
chore(readme): auto-update asset tables [skip ci]
iguazio-cicd Nov 17, 2025
356cb38
[Evidently] Fill example notebook (#919)
danielperezz Nov 17, 2025
284fb2a
chore(readme): auto-update asset tables [skip ci]
iguazio-cicd Nov 17, 2025
bf8a105
Merge branch 'master' into development
Eyal-Danieli Nov 18, 2025
cdbcc2c
chore(readme): auto-update asset tables [skip ci]
iguazio-cicd Nov 18, 2025
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 7 additions & 1 deletion .github/workflows/test-all.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -116,6 +116,10 @@ jobs:
permissions:
contents: write
steps:
- name: Get the current branch name
shell: bash
run: echo "branch=${GITHUB_REF#refs/heads/}" >> $GITHUB_OUTPUT
id: branch
- uses: actions/checkout@v4
with:
fetch-depth: 0
Expand All @@ -128,7 +132,9 @@ jobs:
pip install --upgrade pip
pip install -r requirements.txt
- name: Regenerate README tables
run: python -m cli.cli update-readme --asset functions --asset modules
env:
CHANNEL: ${{ steps.branch.outputs.branch }}
run: python -m cli.cli update-readme -c $CHANNEL --asset functions --asset modules
- name: Commit & push (if changed)
env:
USERNAME: ${{ secrets.USERNAME }}
Expand Down
4 changes: 2 additions & 2 deletions cli/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -60,7 +60,7 @@ Example:
Regenerate the `README.md` files in each of the asset directories (functions/modules).

Usage:
`python -m cli.cli update-readme --asset TYPE`
`python -m cli.cli update-readme -c CHANNEL --asset TYPE`

Example:
`python -m cli.cli update-readme --asset functions --asset modules`
`python -m cli.cli update-readme -c master --asset functions --asset modules`
17 changes: 10 additions & 7 deletions cli/common/update_readme.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,6 +25,7 @@
COLUMNS = ("Name", "Description", "Kind", "Categories")

@click.command("update-readme")
@click.option("-c", "--channel", default="master", help="Name of build channel")
@click.option(
"--asset",
multiple=True,
Expand All @@ -34,7 +35,7 @@
)
@click.option("--check", is_flag=True,
help="Do not write; exit non‑zero if README(s) would change.")
def update_readme(asset: Iterable[str],
def update_readme(channel: str, asset: Iterable[str],
check: bool) -> None:
"""
Regenerate the README tables for asset types from their item.yaml files.
Expand All @@ -50,15 +51,15 @@ def update_readme(asset: Iterable[str],
root = Path(".").resolve()
asset_dir = root / t
readme = asset_dir / "README.md"
rows = _rows_for_asset_type(asset_dir)
rows = _rows_for_asset_type(channel, asset_dir)
table_md = _build_table_md(rows)
old = readme.read_text() if readme.exists() else f"# {t.title()}\n\n"
new = _replace_block(old, table_md)
if new != old:
changed_any = True
touched.append(str(readme))
else:
if _update_one(t):
if _update_one(channel, t):
changed_any = True
touched.append(str((Path(t) / "README.md").as_posix()))

Expand All @@ -78,7 +79,7 @@ def update_readme(asset: Iterable[str],
click.echo("No README changes.")


def _rows_for_asset_type(asset_dir: Path) -> List[Tuple[str, str, str, str]]:
def _rows_for_asset_type(channel: str, asset_dir: Path) -> List[Tuple[str, str, str, str]]:
"""Scan <asset>/src/*/item.yaml and return table rows."""
src = asset_dir / "src"
if not src.exists():
Expand All @@ -97,7 +98,9 @@ def _rows_for_asset_type(asset_dir: Path) -> List[Tuple[str, str, str, str]]:
cats = data.get("categories") or []
cats_str = ", ".join(c.strip() for c in cats) if isinstance(cats, list) else str(cats).strip()
# Link the name to its source directory
link = f"[{asset_name}]({(asset_dir / 'src' / asset_name).as_posix()})"
# Construct the relative path from the repo root for the asset
rel_path = asset_dir.relative_to(Path(".").resolve())
link = f"[{asset_name}](https://github.com/mlrun/functions/tree/{channel}/{rel_path}/src/{asset_name})"
rows.append((link, desc, kind, cats_str))

rows.sort(key=lambda r: r[0].lower())
Expand Down Expand Up @@ -140,13 +143,13 @@ def _replace_block(readme_text: str, new_block: str) -> str:
return readme_text[:start_close] + "\n" + new_block + "\n" + readme_text[ei:]


def _update_one(asset_type: str) -> bool:
def _update_one(channel: str, asset_type: str) -> bool:
"""Generate/replace the table in <asset_type>/README.md. Return True if changed."""
root = Path(".").resolve()
asset_dir = root / asset_type
readme = asset_dir / "README.md"

rows = _rows_for_asset_type(asset_dir)
rows = _rows_for_asset_type(channel, asset_dir)
table_md = _build_table_md(rows)
old = readme.read_text() if readme.exists() else f"# {asset_type.title()}\n\n"
new = _replace_block(old, table_md)
Expand Down
10 changes: 8 additions & 2 deletions cli/marketplace/conf.template
Original file line number Diff line number Diff line change
Expand Up @@ -15,8 +15,14 @@ import re
import sys
import os

sys.path.insert(0, "{{sphinx_docs_target}}")
sys.path.insert(0, os.path.abspath(os.path.join("{{sphinx_docs_target}}", "../functions")))
import pathlib

DOCS_DIR = pathlib.Path(__file__).resolve().parent
REPO_ROOT = DOCS_DIR.parent

# Add both source trees
sys.path.insert(0, str(REPO_ROOT / "functions"))
sys.path.insert(0, str(REPO_ROOT / "modules"))


# -- Project information -----------------------------------------------------
Expand Down
72 changes: 36 additions & 36 deletions functions/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -9,40 +9,40 @@ it is expected that contributors follow certain guidelines/protocols (please chi
<!-- AUTOGEN:START (do not edit below) -->
| Name | Description | Kind | Categories |
| --- | --- | --- | --- |
| [aggregate](/home/runner/work/functions/functions/functions/src/aggregate) | Rolling aggregation over Metrics and Lables according to specifications | job | data-preparation |
| [arc_to_parquet](/home/runner/work/functions/functions/functions/src/arc_to_parquet) | retrieve remote archive, open and save as parquet | job | utils |
| [auto_trainer](/home/runner/work/functions/functions/functions/src/auto_trainer) | Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM. | job | machine-learning, model-training |
| [azureml_serving](/home/runner/work/functions/functions/functions/src/azureml_serving) | AzureML serving function | serving | machine-learning, model-serving |
| [azureml_utils](/home/runner/work/functions/functions/functions/src/azureml_utils) | Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom. | job | model-serving, utils |
| [batch_inference](/home/runner/work/functions/functions/functions/src/batch_inference) | Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis. | job | model-serving |
| [batch_inference_v2](/home/runner/work/functions/functions/functions/src/batch_inference_v2) | Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis. | job | model-serving |
| [describe](/home/runner/work/functions/functions/functions/src/describe) | describe and visualizes dataset stats | job | data-analysis |
| [describe_dask](/home/runner/work/functions/functions/functions/src/describe_dask) | describe and visualizes dataset stats | job | data-analysis |
| [describe_spark](/home/runner/work/functions/functions/functions/src/describe_spark) | | job | data-analysis |
| [feature_selection](/home/runner/work/functions/functions/functions/src/feature_selection) | Select features through multiple Statistical and Model filters | job | data-preparation, machine-learning |
| [gen_class_data](/home/runner/work/functions/functions/functions/src/gen_class_data) | Create a binary classification sample dataset and save. | job | data-generation |
| [github_utils](/home/runner/work/functions/functions/functions/src/github_utils) | add comments to github pull request | job | utils |
| [hugging_face_serving](/home/runner/work/functions/functions/functions/src/hugging_face_serving) | Generic Hugging Face model server. | serving | genai, model-serving |
| [load_dataset](/home/runner/work/functions/functions/functions/src/load_dataset) | load a toy dataset from scikit-learn | job | data-preparation |
| [mlflow_utils](/home/runner/work/functions/functions/functions/src/mlflow_utils) | Mlflow model server, and additional utils. | serving | model-serving, utils |
| [model_server](/home/runner/work/functions/functions/functions/src/model_server) | generic sklearn model server | nuclio:serving | model-serving, machine-learning |
| [model_server_tester](/home/runner/work/functions/functions/functions/src/model_server_tester) | test model servers | job | monitoring, model-serving |
| [noise_reduction](/home/runner/work/functions/functions/functions/src/noise_reduction) | Reduce noise from audio files | job | data-preparation, audio |
| [onnx_utils](/home/runner/work/functions/functions/functions/src/onnx_utils) | ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun. | job | utils, deep-learning |
| [open_archive](/home/runner/work/functions/functions/functions/src/open_archive) | Open a file/object archive into a target directory | job | utils |
| [pii_recognizer](/home/runner/work/functions/functions/functions/src/pii_recognizer) | This function is used to recognize PII in a directory of text files | job | data-preparation, NLP |
| [pyannote_audio](/home/runner/work/functions/functions/functions/src/pyannote_audio) | pyannote's speech diarization of audio files | job | deep-learning, audio |
| [question_answering](/home/runner/work/functions/functions/functions/src/question_answering) | GenAI approach of question answering on a given data | job | genai |
| [send_email](/home/runner/work/functions/functions/functions/src/send_email) | Send Email messages through SMTP server | job | utils |
| [silero_vad](/home/runner/work/functions/functions/functions/src/silero_vad) | Silero VAD (Voice Activity Detection) functions. | job | deep-learning, audio |
| [sklearn_classifier](/home/runner/work/functions/functions/functions/src/sklearn_classifier) | train any classifier using scikit-learn's API | job | machine-learning, model-training |
| [sklearn_classifier_dask](/home/runner/work/functions/functions/functions/src/sklearn_classifier_dask) | train any classifier using scikit-learn's API over Dask | job | machine-learning, model-training |
| [structured_data_generator](/home/runner/work/functions/functions/functions/src/structured_data_generator) | GenAI approach of generating structured data according to a given schema | job | data-generation, genai |
| [test_classifier](/home/runner/work/functions/functions/functions/src/test_classifier) | test a classifier using held-out or new data | job | machine-learning, model-testing |
| [text_to_audio_generator](/home/runner/work/functions/functions/functions/src/text_to_audio_generator) | Generate audio file from text using different speakers | job | data-generation, audio |
| [tf2_serving](/home/runner/work/functions/functions/functions/src/tf2_serving) | tf2 image classification server | nuclio:serving | model-serving, machine-learning |
| [transcribe](/home/runner/work/functions/functions/functions/src/transcribe) | Transcribe audio files into text files | job | audio, genai |
| [translate](/home/runner/work/functions/functions/functions/src/translate) | Translate text files from one language to another | job | genai, NLP |
| [v2_model_server](/home/runner/work/functions/functions/functions/src/v2_model_server) | generic sklearn model server | serving | model-serving, machine-learning |
| [v2_model_tester](/home/runner/work/functions/functions/functions/src/v2_model_tester) | test v2 model servers | job | model-testing, machine-learning |
| [aggregate](https://github.com/mlrun/functions/tree/development/functions/src/aggregate) | Rolling aggregation over Metrics and Lables according to specifications | job | data-preparation |
| [arc_to_parquet](https://github.com/mlrun/functions/tree/development/functions/src/arc_to_parquet) | retrieve remote archive, open and save as parquet | job | utils |
| [auto_trainer](https://github.com/mlrun/functions/tree/development/functions/src/auto_trainer) | Automatic train, evaluate and predict functions for the ML frameworks - Scikit-Learn, XGBoost and LightGBM. | job | machine-learning, model-training |
| [azureml_serving](https://github.com/mlrun/functions/tree/development/functions/src/azureml_serving) | AzureML serving function | serving | machine-learning, model-serving |
| [azureml_utils](https://github.com/mlrun/functions/tree/development/functions/src/azureml_utils) | Azure AutoML integration in MLRun, including utils functions for training models on Azure AutoML platfrom. | job | model-serving, utils |
| [batch_inference](https://github.com/mlrun/functions/tree/development/functions/src/batch_inference) | Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis. | job | model-serving |
| [batch_inference_v2](https://github.com/mlrun/functions/tree/development/functions/src/batch_inference_v2) | Batch inference (also knows as prediction) for the common ML frameworks (SciKit-Learn, XGBoost and LightGBM) while performing data drift analysis. | job | model-serving |
| [describe](https://github.com/mlrun/functions/tree/development/functions/src/describe) | describe and visualizes dataset stats | job | data-analysis |
| [describe_dask](https://github.com/mlrun/functions/tree/development/functions/src/describe_dask) | describe and visualizes dataset stats | job | data-analysis |
| [describe_spark](https://github.com/mlrun/functions/tree/development/functions/src/describe_spark) | | job | data-analysis |
| [feature_selection](https://github.com/mlrun/functions/tree/development/functions/src/feature_selection) | Select features through multiple Statistical and Model filters | job | data-preparation, machine-learning |
| [gen_class_data](https://github.com/mlrun/functions/tree/development/functions/src/gen_class_data) | Create a binary classification sample dataset and save. | job | data-generation |
| [github_utils](https://github.com/mlrun/functions/tree/development/functions/src/github_utils) | add comments to github pull request | job | utils |
| [hugging_face_serving](https://github.com/mlrun/functions/tree/development/functions/src/hugging_face_serving) | Generic Hugging Face model server. | serving | genai, model-serving |
| [load_dataset](https://github.com/mlrun/functions/tree/development/functions/src/load_dataset) | load a toy dataset from scikit-learn | job | data-preparation |
| [mlflow_utils](https://github.com/mlrun/functions/tree/development/functions/src/mlflow_utils) | Mlflow model server, and additional utils. | serving | model-serving, utils |
| [model_server](https://github.com/mlrun/functions/tree/development/functions/src/model_server) | generic sklearn model server | nuclio:serving | model-serving, machine-learning |
| [model_server_tester](https://github.com/mlrun/functions/tree/development/functions/src/model_server_tester) | test model servers | job | monitoring, model-serving |
| [noise_reduction](https://github.com/mlrun/functions/tree/development/functions/src/noise_reduction) | Reduce noise from audio files | job | data-preparation, audio |
| [onnx_utils](https://github.com/mlrun/functions/tree/development/functions/src/onnx_utils) | ONNX intigration in MLRun, some utils functions for the ONNX framework, optimizing and converting models from different framework to ONNX using MLRun. | job | utils, deep-learning |
| [open_archive](https://github.com/mlrun/functions/tree/development/functions/src/open_archive) | Open a file/object archive into a target directory | job | utils |
| [pii_recognizer](https://github.com/mlrun/functions/tree/development/functions/src/pii_recognizer) | This function is used to recognize PII in a directory of text files | job | data-preparation, NLP |
| [pyannote_audio](https://github.com/mlrun/functions/tree/development/functions/src/pyannote_audio) | pyannote's speech diarization of audio files | job | deep-learning, audio |
| [question_answering](https://github.com/mlrun/functions/tree/development/functions/src/question_answering) | GenAI approach of question answering on a given data | job | genai |
| [send_email](https://github.com/mlrun/functions/tree/development/functions/src/send_email) | Send Email messages through SMTP server | job | utils |
| [silero_vad](https://github.com/mlrun/functions/tree/development/functions/src/silero_vad) | Silero VAD (Voice Activity Detection) functions. | job | deep-learning, audio |
| [sklearn_classifier](https://github.com/mlrun/functions/tree/development/functions/src/sklearn_classifier) | train any classifier using scikit-learn's API | job | machine-learning, model-training |
| [sklearn_classifier_dask](https://github.com/mlrun/functions/tree/development/functions/src/sklearn_classifier_dask) | train any classifier using scikit-learn's API over Dask | job | machine-learning, model-training |
| [structured_data_generator](https://github.com/mlrun/functions/tree/development/functions/src/structured_data_generator) | GenAI approach of generating structured data according to a given schema | job | data-generation, genai |
| [test_classifier](https://github.com/mlrun/functions/tree/development/functions/src/test_classifier) | test a classifier using held-out or new data | job | machine-learning, model-testing |
| [text_to_audio_generator](https://github.com/mlrun/functions/tree/development/functions/src/text_to_audio_generator) | Generate audio file from text using different speakers | job | data-generation, audio |
| [tf2_serving](https://github.com/mlrun/functions/tree/development/functions/src/tf2_serving) | tf2 image classification server | nuclio:serving | model-serving, machine-learning |
| [transcribe](https://github.com/mlrun/functions/tree/development/functions/src/transcribe) | Transcribe audio files into text files | job | audio, genai |
| [translate](https://github.com/mlrun/functions/tree/development/functions/src/translate) | Translate text files from one language to another | job | genai, NLP |
| [v2_model_server](https://github.com/mlrun/functions/tree/development/functions/src/v2_model_server) | generic sklearn model server | serving | model-serving, machine-learning |
| [v2_model_tester](https://github.com/mlrun/functions/tree/development/functions/src/v2_model_tester) | test v2 model servers | job | model-testing, machine-learning |
<!-- AUTOGEN:END -->
41 changes: 21 additions & 20 deletions functions/src/translate/function.yaml

Large diffs are not rendered by default.

6 changes: 3 additions & 3 deletions functions/src/translate/item.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,7 @@ labels:
author: Iguazio
maintainers: []
marketplaceType: ''
mlrunVersion: 1.7.0
mlrunVersion: 1.10.0-rc41
name: translate
platformVersion: 3.5.3
spec:
Expand All @@ -23,8 +23,8 @@ spec:
requirements:
- transformers
- sentencepiece
- torch
- torch>=2.6
- tqdm
url: ''
version: 0.2.0
version: 0.3.0
test_valid: True
2 changes: 1 addition & 1 deletion functions/src/translate/requirements.txt
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
transformers
tqdm
torch
torch>=2.6
sentencepiece
Loading
Loading