Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
16 changes: 12 additions & 4 deletions swift/llm/template/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -357,11 +357,16 @@ def get_base_model(model):
else:
return model

def _rlhf_encode(self, inputs: TemplateInputs) -> Dict[str, Any]:
def _rlhf_encode(self, inputs: TemplateInputs, check_rejected=True) -> Dict[str, Any]:
chosen = inputs.chosen
margin = chosen.margin
chosen_encoded = self._encode_truncated(chosen)
rejected_encoded = self._encode_truncated(inputs.rejected)
if inputs.rejected is None:
if check_rejected:
raise ValueError('inputs.rejected is None')
rejected_encoded = {}
else:
rejected_encoded = self._encode_truncated(inputs.rejected)

encoded = {}
for prefix in ['chosen', 'rejected']:
Expand All @@ -373,7 +378,7 @@ def _rlhf_encode(self, inputs: TemplateInputs) -> Dict[str, Any]:
return encoded

def _kto_encode(self, inputs: TemplateInputs) -> Dict[str, Any]:
encoded = self._rlhf_encode(inputs)
encoded = self._rlhf_encode(inputs, check_rejected=False)
encoded['label'] = bool(inputs.chosen.label)
return encoded

Expand Down Expand Up @@ -1485,7 +1490,10 @@ def _kto_data_collator(self, batch: List[Dict[str, Any]], *, padding_to: Optiona
kl_batch = self._fetch_inputs_startswith(batch, 'rejected_')

res = self._data_collator(new_batch, padding_to=padding_to)
kl_res = self._data_collator(kl_batch, padding_to=padding_to)
if any(kl_batch):
kl_res = self._data_collator(kl_batch, padding_to=padding_to)
else:
kl_res = {}
res = {
**{f'completion_{k}': v
for k, v in res.items()},
Expand Down
21 changes: 11 additions & 10 deletions swift/llm/train/kto.py
Original file line number Diff line number Diff line change
Expand Up @@ -41,16 +41,17 @@ def _get_kl_dataset(dataset: Optional[HfDataset],


def prepare_kto_dataset(args, train_dataset, val_dataset):
world_size = get_dist_setting()[2]
if hasattr(args, 'global_batch_size') and args.global_batch_size is not None:
total_batch_size = args.global_batch_size
else:
total_batch_size = (world_size * args.per_device_train_batch_size * args.gradient_accumulation_steps)
if total_batch_size <= 1:
raise ValueError('Batch size is 1 (too small). KTO will not work properly because the KL term '
'will be equivalent to the implied reward.')
train_dataset = _get_kl_dataset(train_dataset, total_batch_size, args.dataset_num_proc, args.data_seed)
val_dataset = _get_kl_dataset(val_dataset, total_batch_size, args.dataset_num_proc, args.data_seed)
if args.loss_type != 'apo_zero_unpaired':
world_size = get_dist_setting()[2]
if hasattr(args, 'global_batch_size') and args.global_batch_size is not None:
total_batch_size = args.global_batch_size
else:
total_batch_size = (world_size * args.per_device_train_batch_size * args.gradient_accumulation_steps)
if total_batch_size <= 1:
raise ValueError('Batch size is 1 (too small). KTO will not work properly because the KL term '
'will be equivalent to the implied reward.')
train_dataset = _get_kl_dataset(train_dataset, total_batch_size, args.dataset_num_proc, args.data_seed)
val_dataset = _get_kl_dataset(val_dataset, total_batch_size, args.dataset_num_proc, args.data_seed)

label = train_dataset['label']
num_desirable = max(sum(label), 1)
Expand Down
8 changes: 6 additions & 2 deletions swift/megatron/trainers/kto_trainer.py
Original file line number Diff line number Diff line change
Expand Up @@ -76,7 +76,7 @@ def loss_func(self, output_tensor, *, data, kl_data, label):
loss = loss.mean()
mean_metric = {
'loss': loss.detach().clone(),
'kl': kl.detach(),
'kl': kl.squeeze().detach(),
}
metric = self._all_reduce_metric(mean_metric)
sum_metric = {
Expand Down Expand Up @@ -159,7 +159,11 @@ def _prepare_batch(self, data, vp_stage):
num_samples = data.pop('num_samples')
for key in ['completion_', 'KL_completion_']:
_data = {k[len(key):]: v for k, v in data.items() if k.startswith(key)}
res.append(super()._prepare_batch(_data, vp_stage, num_samples))
if not self.args.calculate_KL and key == 'KL_completion_':
_data = {}
else:
_data = super()._prepare_batch(_data, vp_stage, num_samples)
res.append(_data)
res[0]['label'] = data['label']
return res

Expand Down
Loading