Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
26 changes: 26 additions & 0 deletions flopy4/mf6/converter.py
Original file line number Diff line number Diff line change
Expand Up @@ -151,6 +151,32 @@ def unstructure_component(value: Component) -> dict[str, Any]:
dim in field_value.dims for dim in ["nlay", "nrow", "ncol", "nnodes"]
)
if has_spatial_dims:
# terrible hack to convert flat nodes dimension to 3d structured dims.
# long term solution for this is to use a custom xarray index. filters
# should then have access to all dimensions needed.
dims_ = set(field_value.dims).copy()
dims_.remove("nper")
if dims_ == {"nnodes"}:
parent = value.parent # type: ignore
field_value = xr.DataArray(
field_value.data.reshape(
(
field_value.sizes["nper"],
parent.dims["nlay"],
parent.dims["ncol"],
parent.dims["nrow"],
)
),
dims=("nper", "nlay", "ncol", "nrow"),
coords={
"nper": field_value.coords["nper"],
"nlay": range(parent.dims["nlay"]),
"ncol": range(parent.dims["ncol"]),
"nrow": range(parent.dims["nrow"]),
},
name=field_value.name,
)

period_data[field_name] = {
kper: field_value.isel(nper=kper)
for kper in range(field_value.sizes["nper"])
Expand Down
Loading
Loading