@@ -4193,11 +4193,10 @@ def hexbin(self, x, y, C=None, gridsize=100, bins=None,
41934193 of the observations at (x[i],y[i]).
41944194
41954195 If *C* is specified, it specifies values at the coordinate
4196- (x[i],y[i]). These values are accumulated for each hexagonal
4196+ (x[i], y[i]). These values are accumulated for each hexagonal
41974197 bin and then reduced according to *reduce_C_function*, which
4198- defaults to numpy's mean function (np.mean). (If *C* is
4199- specified, it must also be a 1-D sequence of the same length
4200- as *x* and *y*.)
4198+ defaults to `numpy.mean`. (If *C* is specified, it must also
4199+ be a 1-D sequence of the same length as *x* and *y*.)
42014200
42024201 Parameters
42034202 ----------
@@ -4213,7 +4212,7 @@ def hexbin(self, x, y, C=None, gridsize=100, bins=None,
42134212 tuple with two elements specifying the number of hexagons
42144213 in the *x*-direction and the *y*-direction.
42154214
4216- bins : { 'log'} or int or sequence, optional, default is *None*
4215+ bins : 'log' or int or sequence, optional, default is *None*
42174216 If *None*, no binning is applied; the color of each hexagon
42184217 directly corresponds to its count value.
42194218
@@ -4289,11 +4288,9 @@ def hexbin(self, x, y, C=None, gridsize=100, bins=None,
42894288
42904289 Returns
42914290 -------
4292- object
4293- a :class:`~matplotlib.collections.PolyCollection` instance; use
4294- :meth:`~matplotlib.collections.PolyCollection.get_array` on
4295- this :class:`~matplotlib.collections.PolyCollection` to get
4296- the counts in each hexagon.
4291+ polycollection
4292+ A `.PolyCollection` instance; use `.PolyCollection.get_array` on
4293+ this to get the counts in each hexagon.
42974294
42984295 If *marginals* is *True*, horizontal
42994296 bar and vertical bar (both PolyCollections) will be attached
@@ -6060,11 +6057,11 @@ def hist(self, x, bins=None, range=None, density=None, weights=None,
60606057 ----------
60616058 x : (n,) array or sequence of (n,) arrays
60626059 Input values, this takes either a single array or a sequence of
6063- arrays which are not required to be of the same length
6060+ arrays which are not required to be of the same length.
60646061
6065- bins : integer or sequence or 'auto' , optional
6062+ bins : int or sequence or str , optional
60666063 If an integer is given, ``bins + 1`` bin edges are calculated and
6067- returned, consistent with :func: `numpy.histogram`.
6064+ returned, consistent with `numpy.histogram`.
60686065
60696066 If `bins` is a sequence, gives bin edges, including left edge of
60706067 first bin and right edge of last bin. In this case, `bins` is
@@ -6081,9 +6078,12 @@ def hist(self, x, bins=None, range=None, density=None, weights=None,
60816078
60826079 Unequally spaced bins are supported if *bins* is a sequence.
60836080
6084- If Numpy 1.11 is installed, may also be ``'auto'``.
6081+ With Numpy 1.11 or newer, you can alternatively provide a string
6082+ describing a binning strategy, such as 'auto', 'sturges', 'fd',
6083+ 'doane', 'scott', 'rice', 'sturges' or 'sqrt', see
6084+ `numpy.histogram`.
60856085
6086- Default is taken from the rcParam `` hist.bins` `.
6086+ The default is taken from :rc:` hist.bins`.
60876087
60886088 range : tuple or None, optional
60896089 The lower and upper range of the bins. Lower and upper outliers
@@ -6096,7 +6096,7 @@ def hist(self, x, bins=None, range=None, density=None, weights=None,
60966096
60976097 Default is ``None``
60986098
6099- density : boolean , optional
6099+ density : bool , optional
61006100 If ``True``, the first element of the return tuple will
61016101 be the counts normalized to form a probability density, i.e.,
61026102 the area (or integral) under the histogram will sum to 1.
@@ -6120,7 +6120,7 @@ def hist(self, x, bins=None, range=None, density=None, weights=None,
61206120
61216121 Default is ``None``
61226122
6123- cumulative : boolean , optional
6123+ cumulative : bool , optional
61246124 If ``True``, then a histogram is computed where each bin gives the
61256125 counts in that bin plus all bins for smaller values. The last bin
61266126 gives the total number of datapoints. If *normed* or *density*
@@ -6180,7 +6180,7 @@ def hist(self, x, bins=None, range=None, density=None, weights=None,
61806180
61816181 Default is ``None``
61826182
6183- log : boolean , optional
6183+ log : bool , optional
61846184 If ``True``, the histogram axis will be set to a log scale. If
61856185 *log* is ``True`` and *x* is a 1D array, empty bins will be
61866186 filtered out and only the non-empty ``(n, bins, patches)``
@@ -6194,14 +6194,14 @@ def hist(self, x, bins=None, range=None, density=None, weights=None,
61946194
61956195 Default is ``None``
61966196
6197- label : string or None, optional
6197+ label : str or None, optional
61986198 String, or sequence of strings to match multiple datasets. Bar
61996199 charts yield multiple patches per dataset, but only the first gets
62006200 the label, so that the legend command will work as expected.
62016201
62026202 default is ``None``
62036203
6204- stacked : boolean , optional
6204+ stacked : bool , optional
62056205 If ``True``, multiple data are stacked on top of each other If
62066206 ``False`` multiple data are arranged side by side if histtype is
62076207 'bar' or on top of each other if histtype is 'step'
@@ -6555,10 +6555,10 @@ def hist2d(self, x, y, bins=10, range=None, normed=False, weights=None,
65556555
65566556 Parameters
65576557 ----------
6558- x, y: array_like, shape (n, )
6558+ x, y : array_like, shape (n, )
65596559 Input values
65606560
6561- bins: [ None | int | [int, int] | array_like | [array, array] ]
6561+ bins : None or int or [int, int] or array_like or [array, array]
65626562
65636563 The bin specification:
65646564
@@ -6582,7 +6582,7 @@ def hist2d(self, x, y, bins=10, range=None, normed=False, weights=None,
65826582 xmax], [ymin, ymax]]. All values outside of this range will be
65836583 considered outliers and not tallied in the histogram.
65846584
6585- normed : boolean , optional, default: False
6585+ normed : bool , optional, default: False
65866586 Normalize histogram.
65876587
65886588 weights : array_like, shape (n, ), optional, default: None
@@ -6612,7 +6612,7 @@ def hist2d(self, x, y, bins=10, range=None, normed=False, weights=None,
66126612
66136613 Other Parameters
66146614 ----------------
6615- cmap : { Colormap, string} , optional
6615+ cmap : Colormap or str , optional
66166616 A :class:`matplotlib.colors.Colormap` instance. If not set, use rc
66176617 settings.
66186618
@@ -6621,7 +6621,7 @@ def hist2d(self, x, y, bins=10, range=None, normed=False, weights=None,
66216621 scale luminance data to ``[0, 1]``. If not set, defaults to
66226622 ``Normalize()``.
66236623
6624- vmin/vmax : { None, scalar} , optional
6624+ vmin/vmax : None or scalar, optional
66256625 Arguments passed to the `Normalize` instance.
66266626
66276627 alpha : ``0 <= scalar <= 1`` or ``None``, optional
0 commit comments