Removing Noise from Images Using Autoencoders
This project explores autoencoders, a class of neural networks used for unsupervised learning. Specifically, we focus on using autoencoders to remove noise from images and restore corrupted images. We will implement different types of autoencoders and analyze their effectiveness in denoising tasks.
- Introduction to Autoencoders
- Unsupervised Learning with Autoencoders
- Types of Autoencoders:
- Basic Autoencoders
- Deep Autoencoders
- Convolutional Autoencoders
- Applications:
- Image Compression
- Image Denoising
- Step-by-Step Guide to Building and Training an Autoencoder in Keras
- Analysis of Results
To run the code in this project, ensure you have the following dependencies installed:
| Library | Version |
|---|---|
| matplotlib | 3.0.2 |
| Keras | 2.2.4 |
| numpy | 1.15.2 |
| PIL | 5.4.1 |
To get started with the project, clone the repository and set up a virtual environment:
$ git clone https://github.com/PacktPublishing/Neural-Network-Projects-with-Python.git
$ cd Neural-Network-Projects-with-PythonEnsure you have Anaconda installed, then run:
$ conda env create -f environment.yml
$ conda activate neural-network-projects-python$ cd Chapter05| File Name | Description |
|---|---|
autoencoder_image_compression.py |
Code for building a simple autoencoder for image compression. |
basic_autoencoder_denoise_MNIST.py |
Basic autoencoder for denoising MNIST images. |
conv_autoencoder_denoise_MNIST.py |
Convolutional autoencoder for denoising MNIST images. |
basic_autoencoder_denoise_documents.py |
Basic autoencoder for denoising document images. |
deep_conv_autoencoder_denoise_documents.py |
Deep convolutional autoencoder for denoising document images. |
To execute a specific script, use:
$ python <script_name>.pyFor example, to run the image compression autoencoder:
$ python autoencoder_image_compression.pyThe trained autoencoders can effectively remove noise from images, demonstrating their utility in real-world applications like image enhancement, medical imaging, and document restoration.