Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
181 changes: 96 additions & 85 deletions scan_service.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,8 @@
import time
import traceback

BORDER_FOR_SORT = 5

def get_result_trac_nghiem(image_trac_nghiem, ANSWER_KEY, debug):
translate = {"A": 0, "B": 1, "C": 2, "D": 3}
revert_translate={0:"A",1:"B",2:"C",3:"D",-1:"N"}
Expand Down Expand Up @@ -142,95 +144,104 @@ def get_result_trac_nghiem(image_trac_nghiem, ANSWER_KEY, debug):


def get_sbd(image_sbd, debug):
image = image_sbd
height, width, channels = image.shape
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
thresh = cv2.adaptiveThreshold(gray, maxValue=255,
adaptiveMethod=cv2.ADAPTIVE_THRESH_MEAN_C,
thresholdType=cv2.THRESH_BINARY_INV ,
blockSize=15,
C=8)
#
# cv2.imshow("cropped", thresh)
# cv2.waitKey(0)

cnts = cv2.findContours(thresh.copy(), cv2.RETR_LIST,
cv2.CHAIN_APPROX_SIMPLE)
cnts = imutils.grab_contours(cnts)

questionCnts = []
for c in cnts:
(x, y, w, h) = cv2.boundingRect(c)
ar = w / float(h)
if w >=width/13 and h >= height/13 and ar >= 0.7 and ar <= 1.3 and w < width/2 and h<=height/8 :
questionCnts.append(c)

questionCnts = contours.sort_contours(questionCnts,
method="top-to-bottom")[0]
# cv2.drawContours(image, questionCnts, -1, (0, 255, 0), 3)
# cv2.imshow("cropped", image)
# cv2.waitKey(0)

if debug['on']:
cv2.drawContours(image, questionCnts, -1, (0, 255, 0), 3)
cv2.imwrite(debug['folder'] +'contours_sbd1.jpeg', image)

if len(questionCnts)!=100:
thresh = cv2.threshold(gray, 0, 255,
cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
cnts = cv2.findContours(thresh.copy(), cv2.RETR_LIST,
cv2.CHAIN_APPROX_SIMPLE)
cnts = imutils.grab_contours(cnts)
questionCnts = []
for c in cnts:
(x, y, w, h) = cv2.boundingRect(c)
ar = w / float(h)
if w >= width / 13 and h >= height / 13 and ar >= 0.7 and ar <= 1.3 and w < width / 2 and h <= height / 8:
questionCnts.append(c)

questionCnts = contours.sort_contours(questionCnts,
method="top-to-bottom")[0]
cv2.drawContours(image, questionCnts, -1, (0, 255, 0), 3)
#cv2.imshow("cropped", image)
#cv2.waitKey(0)

if debug['on']:
cv2.imwrite(debug['folder'] +'contours_sbd.jpeg', image)

sbd = []
thresh = cv2.threshold(gray, 0, 255,
cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
for i in range(0,10):
list_questionCnts=[]
for j1 in range(0,10):
list_questionCnts.append(questionCnts[i+j1*10])
cnts = contours.sort_contours(list_questionCnts,method="top-to-bottom")[0]
bubbled = None
min = 100000000
total=0
for (j, c) in enumerate(cnts):
image = image_sbd.copy()
height, width, channels = image.shape
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
thresh = cv2.adaptiveThreshold(gray, maxValue=255,
adaptiveMethod=cv2.ADAPTIVE_THRESH_MEAN_C,
thresholdType=cv2.THRESH_BINARY_INV ,
blockSize=15,
C=8)
#
# cv2.imshow("cropped", thresh)
# cv2.waitKey(0)

mask = np.zeros(thresh.shape, dtype="uint8")
cv2.drawContours(mask, [c], -1, 255, -1)
mask = cv2.bitwise_and(thresh, thresh, mask=mask)
total = cv2.countNonZero(mask)
# print(j)
# cv2.imshow("cropped", mask)
# cv2.waitKey(0)
if total <= min:
min = total
if bubbled is None or total > bubbled[0]:
bubbled = (total, j)
cnts = cv2.findContours(thresh.copy(), cv2.RETR_LIST,
cv2.CHAIN_APPROX_SIMPLE)
cnts = imutils.grab_contours(cnts)

if bubbled[0] < min * 1.4:
bubbled = (total, -1)
questionCnts = []
for c in cnts:
(x, y, w, h) = cv2.boundingRect(c)
ar = w / float(h)
if w >=width/13 and h >= height/13 and ar >= 0.7 and ar <= 1.3 and w < width/2 and h<=height/8 :
questionCnts.append(c)

sbd.append(bubbled[1])
questionCnts_sorted = sorted(questionCnts, key=lambda contour: (cv2.boundingRect(contour)[0]//BORDER_FOR_SORT, cv2.boundingRect(contour)[1]//BORDER_FOR_SORT))
# cv2.drawContours(image, questionCnts, -1, (0, 255, 0), 3)
# cv2.imshow("cropped", image)
# cv2.waitKey(0)

if bubbled[1]!=-1:
color = list(np.random.random(size=3) * 256)
cv2.drawContours(image, [cnts[bubbled[1]]], -1, color, 3)
return sbd[::-1],image
if debug['on']:
cv2.drawContours(image, questionCnts, -1, (0, 255, 0), 3)
cv2.imwrite(debug['folder'] +'contours_sbd1.jpeg', image)
logging.info(f"do dai sbd contours {len(questionCnts)}")
if len(questionCnts_sorted)!=100:
thresh = cv2.threshold(gray, 0, 255,
cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
cnts = cv2.findContours(thresh.copy(), cv2.RETR_LIST,
cv2.CHAIN_APPROX_SIMPLE)
cnts = imutils.grab_contours(cnts)
questionCnts_sorted = []
for c in cnts:
(x, y, w, h) = cv2.boundingRect(c)
ar = w / float(h)
if w >= width / 13 and h >= height / 13 and ar >= 0.7 and ar <= 1.3 and w < width / 2 and h <= height / 8:
questionCnts.append(c)
questionCnts_sorted = sorted(questionCnts, key=lambda contour: (
cv2.boundingRect(contour)[0] // BORDER_FOR_SORT, cv2.boundingRect(contour)[1] // BORDER_FOR_SORT))

# questionCnts = contours.sort_contours(questionCnts,
# method="top-to-bottom")[0]
cv2.drawContours(image, questionCnts_sorted, -1, (0, 255, 0), 3)
#cv2.imshow("cropped", image)
#cv2.waitKey(0)

if debug['on']:
cv2.imwrite(debug['folder'] +'contours_sbd.jpeg', image)

sbd = []
thresh = cv2.threshold(gray, 0, 255,
cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
if debug['on']:
cv2.imwrite(debug['folder'] + 'sbd-threshed.jpeg', thresh)

for i in range(0,10):
list_questionCnts=[]
for j1 in range(0,10):
list_questionCnts.append(questionCnts_sorted[j1+i*10])
cv2.drawContours(image, questionCnts_sorted, j1+i*10, (255,0,0), -1)

if debug['on']:
cv2.imwrite(debug['folder'] + f'sbd-cot-{str(current_milli_time())}.jpeg', image)
cnts = sorted(list_questionCnts, key=lambda contour: (
cv2.boundingRect(contour)[0] // BORDER_FOR_SORT, cv2.boundingRect(contour)[1] // BORDER_FOR_SORT))
bubbled = None
min = 100000000
total=0
for (j, c) in enumerate(cnts):

mask = np.zeros(thresh.shape, dtype="uint8")
cv2.drawContours(mask, [c], -1, 255, -1)
mask = cv2.bitwise_and(thresh, thresh, mask=mask)
total = cv2.countNonZero(mask)
# print(j)
# cv2.imshow("cropped", mask)
# cv2.waitKey(0)
if total <= min:
min = total
if bubbled is None or total > bubbled[0]:
bubbled = (total, j)

if bubbled[0] < min * 1.4:
bubbled = (total, -1)

sbd.append(bubbled[1])

if bubbled[1]!=-1:
color = list(np.random.random(size=3) * 256)
cv2.drawContours(image, [cnts[bubbled[1]]], -1, color, 3)
return sbd, image



Expand Down