-
Couldn't load subscription status.
- Fork 0
Vector Index Optimization
Temp edited this page Sep 23, 2025
·
1 revision
Last Updated: September 23, 2025 1:48 PM EST
The SQLite MCP Server provides advanced vector index optimization capabilities for high-performance approximate nearest neighbor (ANN) search, enabling efficient similarity search over large embedding datasets.
| Tool | Description |
|---|---|
create_ann_index |
Create approximate nearest neighbor indexes for fast similarity search |
optimize_vector_storage |
Optimize embedding storage with compression and clustering |
vector_clustering |
Perform k-means clustering on embedding vectors |
benchmark_vector_search |
Benchmark and compare vector search performance |
// Create ANN index for fast similarity search
create_ann_index({
"table_name": "document_embeddings",
"vector_column": "embedding",
"index_type": "hnsw", // hnsw, lsh, quantized
"dimensions": 1536,
"max_connections": 16,
"ef_construction": 200
})
// Create LSH index for high-dimensional vectors
create_ann_index({
"table_name": "image_embeddings",
"vector_column": "embedding",
"index_type": "lsh",
"dimensions": 2048,
"hash_tables": 10,
"hash_bits": 12
})// Fast approximate search with ANN index
semantic_search({
"table_name": "document_embeddings",
"query_embedding": query_vector,
"use_ann_index": true,
"ef_search": 100, // HNSW search parameter
"limit": 50,
"approximate": true
})
// Compare exact vs approximate results
benchmark_vector_search({
"table_name": "document_embeddings",
"query_embedding": query_vector,
"test_exact": true,
"test_approximate": true,
"measure_recall": true
})// Optimize storage with vector quantization
optimize_vector_storage({
"table_name": "embeddings",
"vector_column": "embedding",
"compression": "quantized",
"quantization_bits": 8, // 8-bit quantization
"preserve_original": false
})
// Product quantization for high compression
optimize_vector_storage({
"table_name": "large_embeddings",
"vector_column": "embedding",
"compression": "product_quantized",
"subvectors": 8,
"codebook_size": 256
})// Binary storage optimization
optimize_vector_storage({
"table_name": "embeddings",
"vector_column": "embedding",
"storage_format": "binary",
"normalize_vectors": true,
"remove_duplicates": true,
"cluster_similar": true
})// Cluster embeddings for better organization
vector_clustering({
"table_name": "document_embeddings",
"vector_column": "embedding",
"num_clusters": 50,
"algorithm": "kmeans",
"max_iterations": 100,
"store_centroids": true
})
// Hierarchical clustering for nested organization
vector_clustering({
"table_name": "product_embeddings",
"vector_column": "embedding",
"algorithm": "hierarchical",
"linkage": "ward",
"distance_threshold": 0.5,
"create_hierarchy_table": true
})// Search within specific clusters
semantic_search({
"table_name": "document_embeddings",
"query_embedding": query_vector,
"cluster_filter": [1, 3, 7], // Search only these clusters
"limit": 20,
"expand_search": true // Expand to nearby clusters if needed
})// Comprehensive performance benchmark
benchmark_vector_search({
"table_name": "embeddings",
"query_embeddings": test_queries,
"test_configurations": [
{"method": "exact", "name": "Exact Search"},
{"method": "hnsw", "ef_search": 50, "name": "HNSW-50"},
{"method": "hnsw", "ef_search": 100, "name": "HNSW-100"},
{"method": "lsh", "hash_tables": 10, "name": "LSH-10"}
],
"metrics": ["latency", "recall", "throughput"]
})// Tune HNSW parameters for optimal performance
create_ann_index({
"table_name": "embeddings",
"vector_column": "embedding",
"index_type": "hnsw",
"dimensions": 1536,
"optimization_target": "recall", // recall, speed, balanced
"auto_tune": true,
"validation_queries": sample_queries
})// 1. Create optimized storage for millions of documents
optimize_vector_storage({
"table_name": "document_embeddings",
"vector_column": "embedding",
"compression": "quantized",
"quantization_bits": 8,
"cluster_similar": true
});
// 2. Build HNSW index for fast search
create_ann_index({
"table_name": "document_embeddings",
"vector_column": "embedding_compressed",
"index_type": "hnsw",
"max_connections": 32,
"ef_construction": 400
});
// 3. Benchmark performance
benchmark_vector_search({
"table_name": "document_embeddings",
"sample_size": 1000,
"target_recall": 0.95,
"max_latency_ms": 50
});// 1. Cluster products by category and features
vector_clustering({
"table_name": "product_embeddings",
"vector_column": "embedding",
"num_clusters": 100,
"algorithm": "kmeans",
"metadata_columns": ["category", "price_range"]
});
// 2. Create category-specific indexes
create_ann_index({
"table_name": "product_embeddings",
"vector_column": "embedding",
"index_type": "hnsw",
"partition_by": "cluster_id",
"per_partition_optimization": true
});
// 3. Optimized recommendation search
semantic_search({
"table_name": "product_embeddings",
"query_embedding": user_preference_vector,
"use_ann_index": true,
"cluster_filter": relevant_clusters,
"limit": 20,
"diversify_results": true
});// 1. Optimize for low-latency search
optimize_vector_storage({
"table_name": "realtime_embeddings",
"vector_column": "embedding",
"storage_format": "binary",
"memory_mapped": true,
"cache_frequently_accessed": true
});
// 2. Create speed-optimized index
create_ann_index({
"table_name": "realtime_embeddings",
"vector_column": "embedding",
"index_type": "lsh",
"optimization_target": "speed",
"max_latency_ms": 10
});
// 3. Monitor performance
benchmark_vector_search({
"table_name": "realtime_embeddings",
"continuous_monitoring": true,
"alert_on_degradation": true,
"target_p95_latency": 15
});// HNSW for high recall requirements
create_ann_index({
"index_type": "hnsw",
"optimization_target": "recall" // Best for accuracy
});
// LSH for speed-critical applications
create_ann_index({
"index_type": "lsh",
"optimization_target": "speed" // Best for low latency
});
// Quantized for memory-constrained environments
create_ann_index({
"index_type": "quantized",
"optimization_target": "memory" // Best for large datasets
});// Read-heavy workloads: Prioritize compression
optimize_vector_storage({
"compression": "quantized",
"quantization_bits": 8,
"optimize_for": "read_performance"
});
// Write-heavy workloads: Balance compression and write speed
optimize_vector_storage({
"compression": "light",
"optimize_for": "write_performance",
"batch_updates": true
});// Regular performance monitoring
benchmark_vector_search({
"schedule": "daily",
"performance_regression_alert": true,
"auto_reoptimize": true
});
// A/B test different configurations
benchmark_vector_search({
"compare_configurations": [
{"name": "current", "config": current_config},
{"name": "optimized", "config": new_config}
],
"statistical_significance": true
});// Partition large datasets
create_ann_index({
"table_name": "large_embeddings",
"partition_strategy": "hash",
"partitions": 16,
"parallel_indexing": true
});
// Use clustering for better locality
vector_clustering({
"num_clusters": Math.ceil(total_vectors / 10000),
"rebalance_periodically": true
});- HNSW indexes require significant memory but provide best recall
- LSH indexes are memory-efficient but may have lower recall
- Quantized storage reduces memory by 4-8x with minimal accuracy loss
- Exact search: O(n) - slow but perfect recall
- HNSW search: O(log n) - fast with high recall
- LSH search: O(1) - fastest but lower recall
- Clustered search: O(k + log n/k) - balanced approach
- HNSW: Slower to build, faster to search
- LSH: Fast to build, variable search performance
- Clustering: Moderate build time, enables fast filtered search
- Semantic-Vector-Search - Basic semantic search operations
- Core-Database-Tools - Database fundamentals
- Statistical-Analysis - Data analysis tools
- Best-Practices - Usage recommendations
⚡ Optimization Tip: Vector index optimization is about balancing speed, accuracy, and memory usage. Start with exact search to establish baseline performance, then experiment with ANN methods based on your specific requirements.