|
| 1 | +<h2><a href="https://leetcode.com/problems/array-partition">561. Array Partition</a></h2><h3>Easy</h3><hr><p>Given an integer array <code>nums</code> of <code>2n</code> integers, group these integers into <code>n</code> pairs <code>(a<sub>1</sub>, b<sub>1</sub>), (a<sub>2</sub>, b<sub>2</sub>), ..., (a<sub>n</sub>, b<sub>n</sub>)</code> such that the sum of <code>min(a<sub>i</sub>, b<sub>i</sub>)</code> for all <code>i</code> is <strong>maximized</strong>. Return<em> the maximized sum</em>.</p> |
| 2 | + |
| 3 | +<p> </p> |
| 4 | +<p><strong class="example">Example 1:</strong></p> |
| 5 | + |
| 6 | +<pre> |
| 7 | +<strong>Input:</strong> nums = [1,4,3,2] |
| 8 | +<strong>Output:</strong> 4 |
| 9 | +<strong>Explanation:</strong> All possible pairings (ignoring the ordering of elements) are: |
| 10 | +1. (1, 4), (2, 3) -> min(1, 4) + min(2, 3) = 1 + 2 = 3 |
| 11 | +2. (1, 3), (2, 4) -> min(1, 3) + min(2, 4) = 1 + 2 = 3 |
| 12 | +3. (1, 2), (3, 4) -> min(1, 2) + min(3, 4) = 1 + 3 = 4 |
| 13 | +So the maximum possible sum is 4.</pre> |
| 14 | + |
| 15 | +<p><strong class="example">Example 2:</strong></p> |
| 16 | + |
| 17 | +<pre> |
| 18 | +<strong>Input:</strong> nums = [6,2,6,5,1,2] |
| 19 | +<strong>Output:</strong> 9 |
| 20 | +<strong>Explanation:</strong> The optimal pairing is (2, 1), (2, 5), (6, 6). min(2, 1) + min(2, 5) + min(6, 6) = 1 + 2 + 6 = 9. |
| 21 | +</pre> |
| 22 | + |
| 23 | +<p> </p> |
| 24 | +<p><strong>Constraints:</strong></p> |
| 25 | + |
| 26 | +<ul> |
| 27 | + <li><code>1 <= n <= 10<sup>4</sup></code></li> |
| 28 | + <li><code>nums.length == 2 * n</code></li> |
| 29 | + <li><code>-10<sup>4</sup> <= nums[i] <= 10<sup>4</sup></code></li> |
| 30 | +</ul> |
0 commit comments