A real-time hand sign language recognition system using computer vision and deep learning. Built with OpenCV, cvzone, and a custom-trained Keras model, this tool detects and classifies ASL (AβZ) hand gestures using your webcam.
- π· Real-time webcam hand tracking
- β Detects hand gestures AβZ
- π§ Integrates a trained Keras classification model
- πΌοΈ Live GUI preview using Tkinter
- π Continuous detection with smooth frame updates
- Python 3
- OpenCV (
cv2) - cvzone (HandTrackingModule, ClassificationModule)
- TensorFlow/Keras (
.h5model) - NumPy, Math
- Tkinter for GUI
- PIL (Pillow) for image display
- Install dependencies:
pip install opencv-python cvzone numpy Pillow
- Make sure you have the following files: β’ final_code.py β main script β’ Model/keras_model.h5 β trained model β’ Model/labels.txt β corresponding labels file
- Run the application: python final_code.py